18 Speech Recognition

Mikko Kurimo and Panu Somervuo

18.1 The Recognition System

The recent projects in automatic speech recognition (ASR) are aimed both to use
the recognition system as a test bench for the neural network algorithms developed
in the laboratory and to develop the system itself as a pilot application of the neural
networks. To produce respectable results, the best modeling and learning methods
are applied with our own latest developments to fully exploit the available computer
technology so that the recognition can still operate online in real time with high-
dimensional input features. The results show that by the improved methodology
and hardware, reductions in recognition error rate have been successful.

The speech recognition by the system developed in our laboratory occurs in five
successive phases (see Figure 28). The most significant improvements have lately
been introduced to the second and third phases. Some new inventions have also
been tested for the spectrum analysis and for the phoneme string corrections.
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Figure 28: The main phases of the ASR by HMMs.

The recognition task used as a test bench for the new developments is the speaker
dependent, but vocabulary independent ASR. The recognition is based on connect-
ing the hidden Markov models (HMMs) of the phonemes to decode the phoneme
sequences of the spoken utterances [5|. The HMM parameters can be automatically
trained by neural network based methods using only a set of training words for each
speaker. The output density function of each state in each model is a mixture of
multivariate Gaussian densities.

18.2 Determination of the Error Rate

In the speech database collected here mostly in 1995, there are currently data of 20
speakers and at least four recording sessions of 350 Finnish words for each speaker.
The speaker dependent recognition models are trained using three word sets and
tested by the remaining one. The error rate given as the result is the number of
all phoneme errors (inserted,deleted and changed phonemes) divided by the total
number of phonemes. To gain statistical significance for the model comparisons, the
tests are normally made for seven different speakers and the error rates are averaged.
For verifying the robustness of the models for slightly different speech data also an
older database (from 1990) is sometimes used. In general, the older database gives
lower average error rates, probably because of the more experienced speakers.
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For comparisons of the models the post-processing by the Dynamically Expanding
Context (DEC) [1] is not applied in order to extract all the differences of the results.
The long phonemes like /AA/ are separated from their short counterparts by using
phoneme dependent duration limits learned iteratively during the model training.
This simple separation do not take the word context into account and produces
some errors which, in addition to some minor mismatches between the written and
spoken format of the words, affect to the lowest obtainable value for the error rate.
The acoustic features used throughout this work are the mel-cepstrum coefficients
and RMS value of the signal. The basic feature vectors for the experiments are 20
component cepstra, but also extended feature vectors like averaged, concatenated
and delta cepstra were tested and for those sometimes only 10-15 first coefficients
were used.

18.3 Selection of Context Vectors and Multiple Feature
Streams

The implementation of HMM is usually a first-order model and the context of short
time feature vectors is thus not fully used. By using the context of the short-
time feature vectors (see Figure 29), the coarticulation effect can be taken into
account already in the feature extraction stage. The problem is how to define a
suitable context. When the context is added to the recognition process there are
two alternatives: whether to concatenate it to the short time feature vector or to use
parallel feature streams in HMM so that the context is in its own feature stream.
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Figure 29: The features of the spoken word "OTANIEMI". The context vectors are
combinations of several successive short-time features. The context window is 0.1s
wide.

Several experiments were done in order to find discriminative features and a suitable
context vector. Compared to the [4], new elements were delta features and the
investigation of a proper time span for both static short-time feature concatenation
and delta computations. One objective was to keep the dimension of the final feature
vector suitably low. The effect of kernel width in SCHMM using Gaussian kernels
was experimented with several feature vectors. All context vectors were found more
tolerable to the change of kernel width than a single short-time feature. Compared
to the case of using only one single mel-cepstrum, the use of three concatenated mel-
cepstra dropped the phoneme recognition error from 6.7% to 3.5% and from 7.6%
to 4.7% for two test speakers having different speaking rates. It was interesting
that good recognition results were obtained even by using only delta features. Two
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concatenated differences of mel-cepstra as a feature vector gave similar or even better
results than one static mel-cepstrum vector. This is remarkable because when only
difference features are used, the long time average of static features (channel bias) is
automatically removed from the feature vector. The phoneme recognition errors for
two test speakers using two concatenated mel-cepstra differences as a feature were
4.9% and 7.6%. When a static mel-cepstrum was concatenated to this feature vector,
the corresponding errors were 3.1% and 6.0%. In general, significant improvements
in recognition results were achieved when one or more additional static or difference
mel-cepstra was concatenated to the single static or single difference mel-cepstrum.
This shows the importance of using context of a single short-time feature vector.
Two alternatives, whether to concatenate the context vector into one feature stream
or use parallel feature streams in HMM were experimented. When one static mel-
cepstrum was used in one HMM input stream and two concatenated mel-cepstrum
differences were used in another input stream, the phoneme recognition errors were
3.0% and 5.4% for test speakers. Here equal stream weightings were used. The lat-
ter error dropped to 5.0% when more weight was given to the static mel-cepstrum
stream. The average phoneme error rate for six independent speakers using equal
stream weighting was 5.6% when the feature selection was done according to the
results obtained for two test speakers with different speaking rates. Compared to
the baseline system, which had used only one static mel-cepstrum as a feature the
phoneme error rate being 8.5%, the additional context stream gave the error reduc-
tion of 35%.

As a conclusion, the context of a single short-time feature vector is important and
this study has shown that significant improvements in the recognition rate can be
obtained by forming the context using only a few short-time feature vectors.

18.4 Scaling the Recognition System Up by using Extended
Feature Vectors

Despite that the ASR systems should be able to operate online, it is also vital to
study what will happen to the developed modeling and training method, when the
dimensions are doubled or trebled. Actually, the computational capacity of the
workstation used for the ASR demonstrations of the laboratory is now about five
times than three years ago.

In the tests reported in Table 7 the dimensions are increased by adding delta fea-
tures and concatenating averaged successive feature vectors into a high-dimensional
context vector. The objective of these extended feature vectors is to provide the
HMMs more freedom to create component-wise sequential dependencies by giving
the observation densities of the states information on variable length features.

The recognition times in the Table 7 includes simple optimizations such as the
partial distance computation and the ordered search mentioned in [3]for efficient
computation with high-dimensional vectors. The HMMs in test were mixture density
HMMs (MDHMMs) with 70 Gaussians per phoneme trained by SOMs and the
segmental LVQ3. The demonstration system developed in 1994 with 24 Gaussians
per phoneme gave the performance values 6.9 %, 9.8 % and 0.5 for the last three
columns of the Table 7, respectively.

A completely different preprocessing approach has also been studied to develop
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Feature Cepstra | RMS | Context | Total Error rate% Recognition
vector A A dim. | Data 90 | Data 95 | time factor
basic 20 1 no 21 5.5 7.7 1.0

delta2l 10| 10 |1 no 21 4.7 6.8 1.3

deltad2 201 20 | 1|1 no 42 4.0 6.4 1.8

context80 | 15 1 5 80 3.6 5.3 1.7
context105 | 20 1 5 105 3.4 5.3 1.8

Table 7: The contents of the alternative feature vectors in the tests and the average
test set error rates. The MDHMMs are trained by SOMs and the segmental LVQ3.
The recognition time factor is the average recognition time per word divided by that
of the baseline system (“basic” features).

feature extraction methods that correspond better the subjective voice observation
of a human. By visual inspection the phonemes seem to be more distinct by the
obtained auditive spectra than by the conventional mel-cepstra. One project is
currently going on to test the auditive spectra for ASR.

18.5 Continuous Density Phoneme Models

The HMM structure has been a subject for a continuous development throughout
the history of this work. The basic idea has been the simple temporal structure
of uni-directional chains without skips (see Figure 30) and the principle of using
one HMM for each of the 22 common Finnish phonemes including the silences di-
rectly before and after the word. For the output density of the states the building
blocks have been Gaussians with a shared diagonal covariance matrix. The currently
best performing version (Table 8) applies phoneme-wise tied Gaussian codebooks
(PWMHMM), where the mixture densities are shared so that the states represent-
ing the same phoneme use the same codebook [2]. Thus there are as many sets of
Gaussians as there are HMMs, which is a kind of intermediate for the traditional
continuous HMMs (CDHMM) (different set for each state) and semi-continuous
HMMs (SCHMM) (only one large set of Gaussians). The tied Gaussians resembles
the vector quantization codebook of DHMMs, except that the densities are smoothly
overlapped rather than partitioned.

By the PWMHMMs (and MDHMMSs in general) the recognition occurs so that
for the feature vector of every time window, the K-best matching Gaussians are
extracted for every codebook and used to determine the HMM state classification
probabilities. The codebooks were estimated from the training data by SOM and
LVQ based training methods to ensure both the smoothness of the mapping and the
efficient discrimination between phonemes. The most probable state segmentation
for the feature sequence is then revealed using the HMM state structure and finally
the phonemes are extracted from the path. When comparing the performance of
the different continuous density HMMs the Table 8 shows that the PWMHMMs
provide clearly the most appealing configurations, when the number of parameters,
the recognition time and the error rate are compared.
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Figure 30: In phoneme-wise tied MDHMMs the same mixtures are used for the
states representing the same phoneme. The model is defined by the set of transi-
tion probabilities a;;, mixture weights c;, and mixture densities b;(z). The output
probability of state C; at time ¢ is approximated by using only the best matching
mixture densities for the current observation vector x;.

18.6 Discrete HMMs and Long Context Vectors using
CNAPS

The experiments with high-dimensional context vectors [4] showed that the static
recognition accuracy of separate phoneme tokens can be increased from 87% to
99% by substituting the single 20 dimensional cepstra by a 140 dimensional context
vector and increasing the LVQ codebook size from 500 to 2000 units.

Since the winner search for the extended system was to slow to perform online in
a normal workstation, the context vectors and the codebooks were sent to CNAPS
parallel computer with 512 processing nodes. The search results are returned to the
workstation for the HMM probability computations and the decoding of the most
probable state sequence. To improve the HMM performance during the unstable
transition parts between the phonemes, information from another LVQ codebook is
also fed to the HMMs. The input for this codebook is the same as for the other
codebook, but the classification task is to discriminate between phoneme centers
and transition parts.
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Type of Number of | Parameters (x10%) | Recognition

HMM mixtures | weights | means | time factor | error%
CDHMM 4 0.4 9 0.7 7.9
PWMHMM 24 3 11 0.7 6.9
SCHMM 494 54 10 2.6 8.1
CDHMM 24 3 5%} 3.1 5.8
PWMHMM 70 8 32 2.1 5.7

Table 8: Some comparisons between different continuous density HMM structures.
PWMHMM refers to the phoneme-wise tied mixture density HMMs. The CDHMM
and SCHMM experiments are made using the same speech database (Data 90) and
corresponding training methods. The recognition time factor is the average recogni-
tion time per word divided by that of the baseline system (24 mixture PWMHMM).
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Figure 31: The CNAPServer System.

In the tested system the CNAPServer performed parallel computations under the
control of a host workstation as shown in Figure 31. The context vectors are com-
puted in the normal workstation and then transferred in buffers to the CNAPS.
The information about the winner nodes is returned back to the workstation, which
computes the HMM state classification probabilities and finally shows the decoded
phoneme strings. However, despite the excellent off-line recognition results with
DHMMs and the two large LVQ codebooks [4], the system working with the CNAPS
had some problems in the fluent online operation.
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18.7 CNAPS/PC Board in the Continuous Density System

While it was observed that the high-dimensional context vectors can also improve
the performance of the new MDHMM system (see section 18.4), a CNAPS/PC
board was tested to overcome the bottle neck occurring in the search of K-best
match for all phoneme codebooks. The CNAPS/PC board is an ISA bus board that
implements the CNAPS architecture for 128 processing nodes. The motivation for
this work was also to see, whether there would be any major problems in transfer-
ring the workstation based system into the PC with a special board. At least the
data communication was expected to be much simpler and faster than between the
workstation and the CNAPServer.

The computations between the PC and the CNAPS are divided so that after the
collection and formation of each context vector, the CNAPS immediately finds out
the responses and the indexes of the K-best matching Gaussians. The PC then
computes the state-dependent weighted sums that approximate the HMM state
classification probabilities and takes care of the remaining phoneme decoding. So
the CNAPS/PC board actually performs only a part of the third phase from whole
the recognition process (see Figure 28), but this is the part that would otherwise
take over 50% of total recognition time.

As a result of the study, a demonstration system operating with Linux PC using
80-dimensional context vectors processed by the CNAPS/PC board was able to
perform the current ASR task smoothly online. The otherwise excessive codebook
transfers were reduced by performing the parallel search on all phoneme codebooks
in one operation, so that there is no need to change the codebooks in the processor
memory. The size of the memory restricts, however, the use of larger codebooks
and feature vectors. Due to the rapid capacity improvements in the general-purpose
workstations, the corresponding ASR task is now processed online also in the 1997
recognition system without any special hardware.

18.8 Post-processing of Output Strings

If the set of possible output strings is known, the recognition error rate can be
considerably reduced, even if the set is very large (e.g. 100 000 words). Successful
post-processing can be applied as well for an open string set, if the correct strings
are given corresponding to a set of evaluation samples.

A vocabulary-independent post-processing system for HMM based recognizers is
shown in Figure 32. First it extracts the /N best matching result strings using the
mixture density hidden Markov models (HMMs) [3] trained by neural networks.
Then the strings are corrected by the rules generated automatically by the Dynam-
ically Expanding Context (DEC) [1]. Finally, the corrected string candidates and
the extra alternatives proposed by the DEC are ranked according to the likelihood
score of the best HMM path to generate those strings.

The objective of the system is to improve the HMM result strings so that the final
result would be the best string allowed by the DEC rules. Since it is difficult to
directly take care of the DEC rule base during the HMM decoding, the task is
approached by transforming all the best HMM string candidates by the DEC. The
ranking of the transformed strings is obtained by using another HMM decoding pass
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Feature Recognition of Multiple output Selection of
extraction the N-best HMM DEC the best string by
output strings transformations the HMM rescoring

The sequence of Strings: S1,8S2,...,Sny Corrected strings: T1,T5,... ,Tn
feature vectors Extra DEC strings: T}, T, ...

Figure 32: The stages of the N-best HMM-DEC decoding and the information that
is transmitted between the stages.

which is this time restricted to the closed set of candidate strings. The experiments
show that N need not be very large and the method can decrease recognition errors
from a test data that even has no common words with the training data of the
speech recognizer.

If the set of acceptable strings (the vocabulary) is available for the post-processing,
a fast and efficient method based on Redundant Hash Addressing (RHA) [2| and
two successive HMM decoding passes can be applied. First HMM decoding pass is
made unconstrained and it provides one or more best-matching phoneme strings.
Using these strings as keys for hashing, the large vocabulary can be quickly reduced
by RHA so that only strings close enough to the keys will remain. The second,
closed vocabulary HMM decoding pass can be then made in real time and a good
approximation of the best matching acceptable string is found.

18.9 Other Activities

A separate report is given for the performance evaluation for a telephone based
ASR application. Also the results from the developments of the neural network
based training algorithms and fast density approximation methods are provided
separately.
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