MA02. Supervised Statistical Data Mining and Mining of Mutual Dependency

Research group: Samuel Kaski, Jaakko Peltonen, Janne Nikkilä et al. Website: www.cis.hut.fi/projects/mi/

We develop statistical machine learning methods for extracting (mining)useful regularities from large, high-dimensional data sets. Unsupervised mining cannot distinguish relevant from irrelevant variation in a data set. We study two solutions to this problem.

SUPERVISED MINING

In **supervised mining** one data set supervises the mining of the other. We have introduced a principle of *learning metrics*, where the supervision is learned as a distance metric. We have introduced new visualization, clustering and projection methods based on this formalism.

- (1) Self-Organizing Map (SOM) in learning metrics visualizes data focusing on relevant differences (e.g. changes in financial indicators of companies that affect bankruptcy risk).
- **(2) Multidimensional Scaling (MDS) in learning metrics** finds low-dimensional data representations and preserves distances based on relevant differences.
- (3) Relevant Component Analysis finds linear projections of data that are relevant for classes of the data (e.g. projections of sound samples that discriminate different phonemes).
- (4) Supervised Clustering finds clusters of data that are relevant for a variable of interest. We have a version that clusters vectorial data supervised by classes of the data (it finds e.g. clusters of gene expression profiles that are relevant to gene function), and a version that clusters discrete items supervised by co-occurring items (it finds e.g. clusters of documents that are relevant to co-occurring words).

MINING OF MUTUAL DEPENDENCY

In **mining of mutual dependency** the supervision is symmetric and the task is to find dependencies *between* data sets. The data sets have shared samples but different features that supervise each other. We have introduced new clustering and component models for this task.

- (5) Associative Clustering clusters two data sources and maximizes the dependency between the clusterings (e.g. maximizes dependency between clusters of human gene expression profiles and clusters of mouse gene expression profiles).
- **(6) Data Fusion by Canonical Correlation Analysis (CCA)** integrates data from multiple sources, preserving their mutual statistical dependencies and discarding data set-specific effects (e.g. extracts common effects from multiple stress related yeast gene expression data sets to one data set that represents yeast's stress response).
- (7) Non-parametric Dependent Components extends canonical correlation analysis to find linear projections that capture more general dependencies than just correlation.

