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Abstract. A generative distributional clustering model for contin-

uous data is reviewed and methods for optimizing and regularizing

it are introduced and compared. Based on pairs of auxiliary and

primary data, the primary data space is partitioned into Voronoi

regions that are maximally homogeneous in terms of auxiliary data.

Then only variation in the primary data associated with variation

in the auxiliary data influences the clusters. Because the whole

primary space is partitioned, new samples can be easily clustered

in terms of primary data alone. In experiments, the approach

is shown to produce more homogeneous clusters than alternative

methods. Two regularization methods are demonstrated to further

improve the results: An entropy-type penalty for unequal cluster

sizes, and the inclusion of a K-means component to the model.

The latter can alternatively be interpreted as special kind of joint

distribution modeling where the emphasis between discrimination

and unsupervised modeling of primary data can be tuned.

INTRODUCTION

Models exist for discovering components underlying co-occurrences of nom-
inal variables [2, 3, 8], and for the joint distribution p(c,x) of continuous
x ∈ X ⊂ R

n and discrete data c [6, 7, 10]. We consider the related task of
clustering the continuous primary data by conditional modelling such that the
clusters become “relevant for” or “informative of” the discrete auxiliary data,
i.e., capable of predicting p(c|x). The discriminative approach is expected
(and indeed found) to result in clusters more informative about c than those
obtained by modeling the joint distribution. The continuity of x distinguishes
the setting from that of (classic) distributional clustering [12, 16].

The task, coined discriminative clustering (DC), is different from classi-
fication in that the number of clusters need not be equal to the number of
“classes” c. The goal is to discover clusters, and the clusters may represent



combinations of classes or parts of classes, depending on the application. In
DC, the derived cluster structure of the X-space is the primary outcome, even
to the degree that the distributional parameters predicting p(c|x) within a
cluster are integrated out.

The main application area for DC is in data exploration or mining. Al-
ternatively, when c is interpreted as an existing probabilistic partitioning of
X, DC can be used to alter the coarseness of the partitioning.

A prototypical application is partitioning the customers of a company on
the basis of background data (x; including e.g. coordinates of residence, age,
etc.), by grouping existing customers into clusters that are informative of the
buying behavior across several product categories (c). New real or poten-
tial customers can then be clustered even before they have made their first
purchases. Other potential applications include finding prototypical gene ex-
pressions to refine existing functional classification of genes [13], clustering
of financial statements to discover different ways to descend into bankruptcy,
and partitional clustering in general when a variable c is available to auto-
matically guide the clustering.

In this paper a model for discriminative clustering and a Bayesian ob-
jective function for its optimization are reviewed. The model cannot be
optimized directly by gradient-based algorithms, and we show that comple-
menting conjugate gradient with a smoothing of partitions gives comparable
results to the much more time-consuming simulated annealing. The model
is additionally regularized in two alternative ways: by penalizing from un-
equal cluster sizes, or by adding a term interpretable as K-means to the cost
function. The latter is equivalent to generative modeling of the full joint
distribution p(c,x) of primary and auxiliary data, but also interpretable as a
tunable compromise between modeling of p(x) and p(c|x).

In experiments, all the proposed models outperform alternative mixture-
based models in their task, and both regularization methods outperform un-
regularized DC.

DISCRIMINATIVE CLUSTERING

We will start by reviewing the basic discriminative clustering model [9, 13].
Its goal is to partition the primary data space into clusters that are (i) local
and (ii) homogeneous and predictive in terms of auxiliary data. (The connec-
tion between homogeneity and predictivity of the clusters is detailed below.)
Locality is enforced by defining the clusters as Voronoi regions in the primary
data space: x belongs to cluster j, x ∈ Vj , if ‖x−mj‖ ≤ ‖x−mk‖ for all k.
The Voronoi regions are uniquely determined by the parameters {mj}.

Homogeneity is enforced by assigning a distributional prototype ψj to each
Voronoi region j, and by searching for partitionings capable of predicting aux-
iliary data with the prototypes. The prototypes represent multinomial distri-
butions over the auxiliary data, and are parameterized by ψji, the probability
of class i within Voronoi region j. The resulting model is a piecewise-constant



model of p(c|x), with the log likelihood

L =
∑

j

∑
x∈Vj

logψj,c(x) . (1)

Asymptotically for large data

L ∝ −
∑

j

∫
Vj

DKL(p(c|x),ψj)p(x)dx + const. , (2)

where DKL is the Kullback-Leibler divergence between the prototype and
the observed distribution of auxiliary data. This is the cost function of K-
means clustering or Vector Quantization (VQ) with the distortion measured
by DKL. In this sense, maximizing the likelihood of the model maximizes
the distributional homogeneity of the clusters.

It can be shown that maximizing (2) is equivalent to maximizing the mu-
tual information between the auxiliary variable and the partitioning, which
is a connection to earlier models that use the empirical mutual information
as a clustering criterion [1, 13].

For small data sets, empirical mutual information is a severely biased
estimate of the within-cluster homogeneity. An alternative [14], potentially
better behaving form of discriminative clustering is obtained by marginaliz-
ing the likelihood (1), as reviewed next. It turns out that the distributional
prototypes {ψj} can be analytically integrated out from the posterior distri-
bution to leave only the parameters {mj} of the Voronoi regions, which is
convenient given the goal of partitioning the primary space.

MAP Estimation of Clusters of DC

The improper prior p({mj}, {ψj}) ∝ p({ψj}) =
∏

j p(ψj) is used, where

the factors p(ψj) ∝ ∏
i ψ

n0

i −1
ji are Dirichlet priors with the parameters n0

i

common to all j.
The auxiliary data is denoted by D(c), and the primary data by D(x). We

then wish to find the set of clusters {mj} which maximizes the posterior (the
integration is over all the ψj)

MAPDC = p({mj}|D(c), D(x)) =

∫
{ψj}

p({mj}, {ψj}|D(c), D(x))d{ψj} ∝
∫
{ψj}

p(D(c)|{mj}, {ψj}, D(x))p({ψj})d{ψj} =
∏
j

∫
ψj

p(D
(c)
j |ψj)p(ψj) dψj

∝
∏
j

∫
ψj

∏
i

ψ
n0

i +nji−1
ji dψj =

∏
j

∏
i Γ(n0

i + nji)

Γ (N0 +Nj)
. (3)

Here nji is the number of samples of class i in cluster j, Nj =
∑

i nji, and
N0 =

∑
i n

0
i .



OPTIMIZATION

MAPDC itself cannot be optimized by a gradient algorithm because the gra-
dient would be affected only by samples at the (typically zero-probability)
border of the clusters. We have therefore resorted to maximizing the loga-
rithm of a smoothed variant of (3) with the conjugate gradient algorithm [14].
The smoothed “number” of samples is nji =

∑
c(x)=i yj(x), where c(x) is the

class of x and yj(x) is a smoothed cluster “membership function,” defined by
yj(x) = Z(x)−1 exp(−‖x − mj‖2/σ2) with Z such that

∑
j yj(x) = 1, and

σ governing the degree of smoothing. In the experiments smoothing is used
only for optimization, not in evaluation of the clustering results.

Alternatively, the objective function (3) can be optimized directly by sim-
ulated annealing (SA). The above-described smoothed optimization method
is compared with SA in the experimental section of this paper. In each
iteration of SA, a candidate step is generated by making small random dis-
placements to the prototype vectors. The step is accepted if it increases the
value of the objective function. Even if it decreases the objective function it
is accepted, with a probability that is a decreasing function of the change in
the objective function.

We used Gaussian displacements having the covariance matrix
√
Tσ2I,

where I is the identity matrix. Here T = 1/(log(t) + 10) is the decreasing
temperature parameter, a function of the iteration step t. The parameter
σ was chosen with a validation set in preliminary experiments. A displace-
ment step that decreases the objective function by ∆E is accepted with the
probability exp(−∆E/TA), where TA decreases linearly to zero.

REGULARIZATION

Two regularization methods for the marginalized DC (3) are introduced in
this section. The first is a straightforward attempt to improve optimiza-
tion, while the latter is interpretable as joint distribution modeling. Such an
explicit modeling of the “covariates” (here x) may improve discrimination,
especially with small data sets [11].

Favoring Equal Cluster Sizes

In the first regularization method, equal distribution of data into the clusters
is favored, which is useful especially for avoiding “dead clusters” after bad
initialization. The “equalized” objective function is

log MAPDC =
∑
ij

log Γ(n0
i + nji) − (1 + λEQ )

∑
j

log Γ(N0 +Nj) , (4)

where λEQ > 0. As the number of data samples increases, (4) divided by N
approaches mutual information plus λEQ times the entropy of the clusters
(plus a term that does not depend on the parameters; proof omitted for



brevity). Hence, the larger λEQ is, the more solutions with roughly equal
numbers of samples in the clusters are favored.

Modeling the Primary Data Marginal

Discriminative methods that model the conditional probability p(c|x) may
benefit from the regularizing effects of modeling the marginal p(x) as well.
To investigate whether this is the case with DC, we complemented it with a
generative Gaussian mixture-type model for p(x). The full joint distribution
model then is

p(c,x|{mj}{ψj}) = p(c|x, {mj}, {ψj})p(x|{mj}) (5)

Uniquely, both factors of (5) are parameterized by the same centroids {mj}.
As is made explicit in (7) and (8), the special kind of parameterization makes
it possible to interpret (5) as a tunable compromise between modeling p(x)
and p(c|x).

We present two alternative forms for the model of p(x). The first defines
p(x|{mj}) piece-wise for the Voronoi regions as (unnormalized) Gaussians:
For x ∈ Vj ,

p(x|{mj}) = Z({mj})−1e−λVQ‖x−mj‖
2

, (6)

where λVQ > 0. The model is also interpretable as a “classification mixture”
[4]. Despite the piecewise definition, the density is everywhere continuous
with respect to x, for the borders of Voronoi regions are always half-way
between the cluster prototypes. If the normalization factor Z({mj}) is in-
terpreted as a prior, the model for p(x) appears in the total likelihood as a
term representing the traditional K-means cost.

The second investigated model for p(x) is a standard mixture of isotropic
Gaussians with covariances σ2

MoGI and location parameters equal to the {mj}
of DC.

For brevity, details are below derived only for the simpler model (6).

MAP Estimation of Clusters of Joint Model. With the (improper)
prior

p({mj}, {ψj}) ∝ Z({mj})p({ψj}) = Z({mj})
∏
j

p(ψj) ,

the posterior (3) gets the extra factor

∏
j

Z({mj})p(D(x)|{mj}) =
∏
j

∏
x∈Vj

exp(−λVQ‖x− mj‖2) ,

and the log posterior of the joint model becomes

log p({mj}|D(c), D(x)) ∝∑
ij

log Γ(n0
i + nji) −

∑
j

log Γ(N0 +Nj) −
∑

j;x∈Vj

λVQ‖x− mj‖2 . (7)
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Figure 1: The VQ-regularized discriminative clustering (DC) model of (7) makes a
compromise between the plain DC and ordinary K-means (VQ). From the viewpoint
of plain DC (λVQ=0; left), only the vertical dimension is relevant as the distribution
of the binary auxiliary data c was made to change monotonically and only in that
direction. A compromise representation for the data is found at λVQ=0.02 (middle).
The algorithm turns into ordinary VQ when λVQ→∞ (right). Circles denote the
Voronoi region centroids {mj} and gray shades the density p(x).

Interpretations. The model has a Bayesian interpretation as a two-stage
inference process: The posterior distribution of {mj} is first inferred based
on the primary data D(x). The posterior distribution is then used as a prior
for the second, discriminative clustering stage. In the Bayesian context the
prior restricts the complexity of the model.

The first K-means step can alternatively be interpreted as a regularization
term of the cost function. The regularization interpretation is

MAP ≡ log p({mj}|D(c), D(x)) = MAPDC − λVQEV Q , (8)

where EV Q is the quantization error (that is, the cost function) of K-means
clustering. A change in the value of λVQ makes the focus of the clustering
shift between DC and VQ. In practice the value of λVQ will be chosen using
a validation set.

EXPERIMENTS

Toy Demonstration. The Voronoi region centers {mj} of the VQ-regulari-
zed model (7) are shown in Figure 1 for three different values of the parameter
λVQ . The data (10,000 samples) were from an isotropic 2D Gaussian with a
vertically varying p(c|x). For small values of λVQ , the original cost function
of discriminative clustering is minimized, and the clusters represent only the
direction of the X-space where the conditional distribution p(c|x) changes.
When λVQ increases the clusters gradually start to represent all variation in
x, converging to the K-means solution.

Real-Life Data. We compared the plain discriminative clustering

model and the regularized variants on two data sets, with the final



performance of the models measured by (3). The closest alternative mixture
models have been included for reference. Since the effects of regularization
were expected to be most apparent for small data sets, the data were split
into a number of smaller subsets on which a set of independent tests were
made. The DC models were optimized by conjugate gradients.

The Letter Recognition data from the UCI Machine Learning Repository
(16 dimensions, 26 classes, and 20,000 samples) was split into five subsets.
Two-fold modeling and testing for each subset gave a total of ten repetitions of
ten-cluster solutions. The width of the mixture components and smoothing,
and the regularization parameters were selected by 5-fold cross-validation
within each learning set. The parameters {mj} were initialized to a random
set of training samples. (Results with the K-means initialization appearing
in Table 1 are from experiments described later.)

The second data set consisted of 99,983 samples from the TIMIT collec-
tion, with 12 cepstral components as the primary data x and 41 phonemic
classes as values of c. Since the set was larger it was divided into more
(ten) subsets, resulting in twenty repetitions (with parameters within each
repetition selected by 3-fold cross validation).

The best regularized methods were significantly better than plain discrim-
inative clustering, which in turn produced better discriminative clusters than
the reference methods (columns “Letter rand”and“TIMIT rand” in Table 1).

In Figure 2, the effect of tuning the compromise between K-means and DC
in VQ-regularization is shown. As expected, increasing λVQ in general shifts
the solution from optimizing the posterior probability (3) towards optimizing
the K-means error. The new statistically almost significant finding is the
slanting L-form: slight regularization improves the predictive power (the DC
cost) of the clusters for the test set.

The two optimization algorithms are compared in Table 2. The num-
ber of clusters was halved to keep simulated annealing computationally man-

Method Letter rand Letter VQ TIMIT rand TIMIT VQ
DC -4961.9 -4816.9 -12981 -12780
DC-VQ -4933.4 -4779.5 -12905 -12767
DC-MoG -4857.9 -4784.6 -12866 -12722

DC-EQ -4864.1 -4699.8 -12942 -12757
MDA2 -5206.4 -5280.8 -13012 -12989
MoG -6174.9 -6210.8 -13515 -13494
VQ -6194.9 -6194.9 -13487 -13487

Table 1: Comparison of discriminative clustering (DC) and its regularized versions
DC-VQ (7), DC-MoG ((7) with mixture of Gaussians model), and DC-EQ (4)
on two data sets, Letter Recognition and TIMIT. Best posterior probability (3);
significantly worse (t-test, p < 0.01) almost significantly worse (p < 0.05). Mixture

of Gaussians (MoG), plain K-means (VQ), and joint density model MDA2 [7] have
been included for reference. The results are presented for both random and K-means
(VQ) initialization.
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Figure 2: The effect of tuning the VQ-regularization on the two components of
the cost: K-means cost (EVQ) and predictive power (eqn 3; MAPDC), on clusters
found from the TIMIT data. Small dots on the curves: VQ-regularized DCs with
varying parameter λVQ ; large dots from left to right: plain DC, MDA2, mixture of
Gaussians (MoG), plain K-means (VQ); solid line: test set; dashed line: learning
set. Results are averages over cross-validation runs, and for computational reasons
the parameter σ of the DC runs was not cross-validated but kept constant.

ageable. The smoothed conjugate gradient algorithm achieved about equally
good costs as simulated annealing; SA seems to be slightly better for the
TIMIT and CG for the letter data.

Finally we studied, by repeating the ten-cluster experiments, whether
replacing the random initialization with K-means would improve the
results and reduce variation between the data sets. The results of all DC
variants improved significantly (columns “Letter VQ” and “TIMIT VQ” in
Table 1). Regularized versions were still the best, but their relative goodness
depended on the data.

DISCUSSION

An algorithm for distributional clustering of continuous data paired to a
discrete variable was reviewed and extended. With a prototype distribution
of the discrete variable associated to each Voronoi region of the primary

Letter TIMIT
CG SA CG SA

DC -5134.3 -5307.4 -13323 -13602
DC-VQ -5128.3 -5115.4 -13209 -13194
DC-MoG -5075.6 -5172.0 -13202 -13219
DC-EQ -5157.5 -5105.9 -13185 -13172

Table 2: Comparison of the optimization algorithms. CG: Smoothing with conju-
gate gradients; SA: simulated annealing. Key: see Table 1.



data space, the regions are optimized to “predict” the discrete data well. In
experiments the method produced more discriminative clusters than other
methods.

The core DC model for p(c|x) is very close to models proposed earlier for
classification (RBF; [10]). In DC, however, the goal is to discover clusters,
not to separate the data into the fixed pre-defined classes. The main outcome
are clusters of x, even to the extent that we were able to marginalize out the
parameters producing predictions of c.

This paper contains three main new results. (i) The fast optimization of
smoothed Voronoi regions by conjugate gradients produces clusters compa-
rable to those obtained by the considerably more time-consuming simulated
annealing. (ii) The two regularization methods, equalization of the cluster
sizes and shifting the model towards a joint distribution model, improve the
results compared to plain DC. No conclusion could be made of the relative
goodness of the two methods. (iii) K-means initialization is superior to ini-
tialization by random data.

Regularization by joint distribution modeling is interpretable as the in-
clusion of a term of K-means quantization error in the cost function. The
number of parameters in the regularized models is independent of the regu-
larization parameter λVQ , and in this sense the model complexity is fixed.
A regularized model therefore makes a compromise, tunable by λVQ , in rep-
resenting variation of x associated to changes in p(c|x) (the DC task), and
in representing all variation isotropically (the K-means task). In the exper-
iments with regularization, performance on learning data is not impaired
while test set performance improves significantly. For some reason, therefore,
allocating resources to model p(x) improves generalization with respect to
p(c|x).

An adjustable combination of two mixture models was recently proposed
for joint modeling of terms and links in text documents [5]. Here a simi-
lar combination improved a discriminative (conditional-density) model. The
joint distribution modeling approach also makes it possible to treat primary
data samples lacking the corresponding auxiliary part as partially missing
data, along the lines proposed for classification tasks [15].

Finally, the improvement obtained by K-means initialization hints at an
optimization by starting with standard clustering and tuning it gradually
towards DC.
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