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1 Introduction

Dual source learning problems can be formulated as learaij@nt representation of the data
sources, where the shared information is representedmstef a shared underlying process. How-
ever, there may be situations in which the shared informasmot the only useful information,
and interesting aspects of the data are not common to bathsétt. Some useful features within
one data set may not be present in the other and vice versadiniplementary property motivates
the use of multiple data sources over single data sourceghvaaipture only one type of useful in-
formation. For instance, having two eyes (and two streamssofal data) allows us to gain a 3-D
impression of the world. This ability of stereo vision comés both shared features and features
private to each data stream to form a coherent represemts#tibe world; common shifted features
can be used in disparity estimation to infer depths of objaeghile some features which may be
seen in one view but not in the other, due to occlusions, cawighe additional information about
the scene.

In this work, we present a probabilistic generative framiufor analysing two sets of data, where
the structure of each data set is represented in terms ofradshad private latent space. Explic-
ity modeling a private component for each data set avoidsvemsimplified representation of the
within-set variation such that the between-set variatiamloe modeled more accurately, as well as
giving insight into potentially interesting features peumtar to a data set. Since two data sets may
have a complex (possibly nonlinear) relationship, we usgacametric Bayesian techniques - we
define Gaussian process priors over the functions fromtlatedata spaces, such that each data
set is modelled as a Gaussian Process Latent Variable MG&kMM) [1] where the dependency
structure is captured in terms of shared and private kernels

2 Generative modelsfor two related data sources

Suppose that we have two related data variaples ®™ andy., € R™2. We represent each data
source as the sum of two independent components, a shargmboent with the other data source
that captures the common information, and a private comptonbich captures the information

private to the data source. Assuming that the shared compaae be represented in terms of
a shared latent variabke € % ¢ < min(m1,m2), and the private components fgf andy-

in terms of latent variables; € R, ¢ < m; andxs € R%= gy < mo respectively, the data

generation process is:

y1 = fi(s) + ni(x1)

y2 = f5(s) + na(x2) 1)
where fi(s) = [f1.1(8), - fim,(8)]", f2(s) = [f2.1(8),..., fo.m,(s)]" are function val-
ues that share the same inpsit and ni(x;) = [n11(X1), ., n1m, (Xx1)]7, n2(x2) =



Figure 1: The corresponding graphical model for the unstiped learning of two related data
variablegy; andy.. Each data variable consists of two independent compoyibatshared function
f, and the private function.

[n2.1(X2), ..., n2,m, (x2)] T are function values of the private latent variables. Theesponding
graphical model is shown in Figure 1.

2.1 Gaussian processpriorsover shared and private functions

Rather than create parametric forms for the functions, wpleynthe Gaussian process frame-
work to define priors over the functions. Givéa pairs of data variable¥; = [y1 1, ...,yLN]T,
Y, = [ygyl,...,yQ_,N]T, and defining the underlying function values Bs, F, evaluated at
S = [Sl,...,SN]T, anle,Ng evaluated aX; = [X171,...,X17N]T anng = [X271,...,X27N]T
respectively, the priors are given by:

p(F1|8) = [[N(Fri | 0,Ky,), p(Ny | X1) = [[N (01 | 0,Kn,) )
=1 =1
p(Fy | 8) = [[N(F2i | 0, Kp,), p(Ns | Xo) = [[N(n2,i | 0,Kn,) ®)

i=1 i=1

where we have used the notation for a function underlying d@nension; as e.g. f;; =
[f1.i(s1),., fri(sn)]", Kn, andK,, are the covariance functions for the private function pri-
ors, with respective inputX; andX,, andK, andK, are the covariance functions for the shared
function priors, with shared inp.

Given the generative process for the data in (1), and the @Pspn (2) and (3), we integrate over
theF’s andN'’s to get the resulting model:

1 1 _
p(Y1 | X, X;) = R (—5tr<K1 Y, Y] )) (4)
T 2 1] 2
1 1 _
p(YQ | X,XQ) = W exp <—§tT(K2 1Y2Y;)) (5)
T 2 2| 2

whereK; = Ky, + K,,, andK, = Ky, + K,,,. Each data stream is modelled by a Gaussian
Process Latent Variable Variable Model, whose covariannetfon consists of a shared component
(dependent 08) and a private component (dependent on eiffieror X,). The dimensions within
each data set are modelled as independently and identiisiijputed, andX; andX, capture the
correlations withinY'; andY ; respectivelyS captures the correlations betwegn andY,. We can
consider any valid (nonlinear) kernel of the inputs, whietply nonlinear mappings &, X;, and
X, to their respective data spaces. Using a nonparametricsgayprior over the private functions
underlying each data space is an elegant and flexible prerwwderlying private structure of the
data sets. The resulting model is a generalisation of piibigtab canonical correlation analysis
(PCCA) [2], for which the mappings between latent and dascspre linear functions; our model
can be viewed as a probabilistic interpretation of nonlir@@A, where the underlying structure to
the within-set variation is modelled explicitly.



2.2 Training the model

Learning the model, given two sets of related ddtaandY 5, consists of finding the latent coordi-
natesS, X, andX and the hyperparametegs;, @Kf ,1 = 1,2, of the two covariance functions
K, andK2 to maximise the log likelihood function of (4)and (5) We ssaled conjugate gradients
and the GPLVM toolbox available fromttp://www.cs.man.ac.uk/ ~neill/fgplvm/

The optimisation takes place in two steps; first we jointlfimise S and the parameters of the
shared kermnel® g, ,i = 1,2, then we jointly optimiseX,, X and the private kernel parameters
Ok, 4 = 1,2. Since the variation in each data set dimension is effdgtsieared between the
shared latent s&8 and the private latent s&; or X5, due toK; = K¢, (S,S) + K, (X1,X4),
andK, = Ky, (S, S) + Ka, (X2, X2), the model is very sensitive to its initialisation: the aigfom
may become trapped in a local minimum and fail to recoverrie ¢mbedded space. In our exper-
iments we use CCA to initialise the positions®ifsinceS represents the shared features between
Y; andY,. To initialise the private latent spaces, we calculate tfisubspace variances o
andY,, ¥, and ¥, respectively, which are the noise covariance matrices abailistic CCA.
We then findX; andXs by projecting the corresponding data set onto the firgtndq, dominant
eigenvectors of; and W, respectively.

3 Experiments

In this section we demonstrate the model’s performance ortata sets of images. We separate the
images into a set of latent images. The latent images fornsis b& prototype images, consisting
of three sets of images, a set of images that represent thedsaommon to both sets of data, and
two sets of images that represent the features that are cedgipt in their corresponding data set. In
our experiments, we use a variation of the bars problem,twikia test problem defined in [3].

3.1 Barsdata

The bars problem is a benchmark task for learning indepdrodenponents from an image. While
the original problem consists of decomposing a set of imagesa set of underlying features (ver-
tical and horizontal bars), in this experiment we considenalified version of the problem that
illustrates our algorithm’s ability to find both shared ani/ate features for two image sets. We
create two sets of & 8 images; 24 examples from each set are shown in Figure 2&.iBage is
generated by first instantiating one of the 8 possible hatadars, chosen with equal probability.
For the first set of images (top three rows of Figure 2a), orth@# possible vertical bars in the left
half of the image is instantiated with equal probabilitygdamilarly, for the second set of images,
(bottom three rows of Figure 2a) one of the 4 possible vdrtiaes in the right half of the image is
instantiated with equal probability. Producing the two gaaets involves a shared process in the
generation of the horizontal bars, and private processgsnerating the vertical bars.

3.2 Parts-based decomposition of bar images

Our aim is to recover the set of eight shared features - thiedmal bars - and the two sets of four
private features - the vertical bars. One of the difficultiéth the bars data is that each image is
nonlinearly related to the underlying features (the basisice the superposition of the features to
form the image results in occlusion, or overlap, of the fesgu Each image can be thought of as a
linear combination of horizontal and vertical bars whicthisn passed through a nonlinearity which
models the overlap i.e. for théh image of both data sets:

Yl,i = Gfl (SWfl) + Gnl (Xlwnl) (6)
Y2,i = sz (Ssz) + an (XQan) (7)

whereGy,, Gy,, Gy, andG,, are nonlinear output functiondVy; € R¥*™, Wy, € RI¥™2,
W, € Ro*™ andW,,, € R2*™2 gre mixing matrices. For our experiment, we use polynomial
covariance functions of degree 2 for each process to refledtrmwledge about the data generation
process; the polynomial covariance function is given by:

k(xi,x;) =« (wxiij + 7)2 + 57151',3' (8)
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with hyperparameter®, ,, = {«, 3,7, w}, wherea is a scale parametes, is the inverse noise
variancew controls the scale of the dot product component,aigla bias parameter.

We use an 8-dimensional shared latent sgicand a 4-dimensional private latent spagesand
X, (where the columns are the underlying images). We use artcadiata set of 200 pairs of images
such that the 200 columns & ; € R64*200 andY, € R64*200 gre8 x 8 images that contain a
vertical bar in the left and right half of the image respesdilyand a horizontal bar. We also constrain
the latent points’ values to lie between 0 and 1, such thgttbeespond to underlying image pixels.
Each latent poink is reparameterised as, using a sigmoid transform = log(x’/(1 — x’)),
such that the optimisation takes place in a transformedesgagure 2b shows the discovered latent
images (the columns &, X, andX.), after training the model on the 200 pairs of training in@ge
As can be seen, the model manages to decompose the trairaggsnnto the sets of underlying
shared and private features.

3.2.1 Reconstruction of theimages

In this section, we show how the shared and private latengé@®avhich we found in the previous
section can be used to reconstruct the original images. imhidves finding the posterior distri-
butions of the underlying private and shared functions mitree dataY; andY,, and the latent
featuresS, X; andX,. This investigates how well the algorithm is able to model ¢verlap be-
tween features. Figure 2e shows the first 24 reconstructageémfor each data set, given by the
posterior means fo¥; = F; + N} andY3 = F35 + N3 The top three rows are reconstructions
for the first set, and the bottom three rows are reconstmgfior the second set. The reconstructed
images are a good approximation to the original images showvAigure 2a. The reconstructions
for the second set model the overlap between bars more aelyuttzan for the first set. Figure 2c
and 2d shows the shared and private components of each ifeaghows the posterior mean of the
shared function®'; (top three rows) anfl'; (bottom three rows), and (d) shows the posterior mean
of the private function¥N7 (top three rows) aniN3 (bottom three rows). An interesting observation
is that in some of the images, a pixel is missing from one obtirs. This is due to the latent images
being put through the nonlinear map implied by the polyndrmieariance function. This aids in
the successful reconstructions of the original image; thexlap between bars is taken into account
by removing a pixel at the point in the image where the baesgeict.

4 Discussion

We have reviewed a probabilistic generative model that isad® related data sources in terms of
shared and private latent spaces. Each data source is mobdslla GPLVM, which ‘maps’ from
the shared and latent spaces to the data space. The moded g@wied as a nonlinear version of
probabilistic canonical correlation analysis. Similamwbas been carried out independently in [5].
We demonstrated the model’s performance on a parts-basedesition task on two related sets
of images, where the images were decomposed into undeffigatgres that were shared between
the data sets, and private to each data set. Other work Exlusing automatic relevance determi-
nation (ARD) methods, as suggested in [6] from the neurakosks literature, in the covariance
functions to automatically determine the dimensionalityhe latent spaces. Future work includes
investigation of different initialisation schemes for tidel, and experiments with stereo image
data sets.

References

[1] N. D. Lawrence. Probabilistic Non-linear Principal Cponent Analysis with Gaussian Process
Latent Variable ModelsJournal of Machine Learning Research, 6(2005):1783—-1816, 2005.

[2] F.R. Bach and M.I. Jordan. A Probabilisic Interpretatiaf Canonical Correlation Analysis.
Technical Report 688, Dept of Statistics, University ofif@ahia, 2005.

[3] P. Foldiak. Forming sparse representations by logttidebbian learning. IBiological Cyber-
netics, number 64, pages 165-170. 1990.

[4] C. H. Ek, J. Rihan, P. H. S. Torr, G. Rogez, and N. D. Laweersmbiguity Modeling in Latent
Spaces. IiMachine Learning for Multimodal Interaction, volume 5237/2008 of ecture Notes
in Computer Science, pages 62—73. Springer Berlin/Heidelberg, 2008.



@

(

b)

© (d)

(e)

Figure 2: (a) Examples of the training images. The top thoaesiare from the first data set (the first
24 columns ofY,), and the bottom three rows are from the second data set (&4 columns
of Y5). Each image consists of a horizontal bar chosen at random fhhe 8 possibilities, which
corresponds to the process shared by both sets. The firsselatantains a vertical bar chosen at
random from the left half of the image, and the second datas#hins a vertical bar chosen from
the right half of the image. (b) The recovered latent imadé first two rows correspond to the 8
columns ofS, and are the shared features i.e. the horizontal bars. Tride¢hiv corresponds to the 4
columns ofX, the vertical bars in the left half of the image, and the fouolw corresponds to the 4
columns ofX5,the vertical bars in the right half of the image.The postemean of the underlying
shared functions is shown in (c) for the first 24 image¥ef(top three rows) an , (bottom three
rows). (d) shows the posterior mean of the underlying peivanctions forY, (top three rows) and
Y, (bottom three rows). (e) 24 reconstructed images from teedata sel'; (top three rows) and
the second data s¥t, (bottom three rows)
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