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1 Introduction

Dual source learning problems can be formulated as learninga joint representation of the data
sources, where the shared information is represented in terms of a shared underlying process. How-
ever, there may be situations in which the shared information is not the only useful information,
and interesting aspects of the data are not common to both data sets. Some useful features within
one data set may not be present in the other and vice versa; this complementary property motivates
the use of multiple data sources over single data sources which capture only one type of useful in-
formation. For instance, having two eyes (and two streams ofvisual data) allows us to gain a 3-D
impression of the world. This ability of stereo vision combines both shared features and features
private to each data stream to form a coherent representation of the world; common shifted features
can be used in disparity estimation to infer depths of objects, while some features which may be
seen in one view but not in the other, due to occlusions, can provide additional information about
the scene.

In this work, we present a probabilistic generative framework for analysing two sets of data, where
the structure of each data set is represented in terms of a shared and private latent space. Explic-
itly modeling a private component for each data set avoids anoversimplified representation of the
within-set variation such that the between-set variation can be modeled more accurately, as well as
giving insight into potentially interesting features particular to a data set. Since two data sets may
have a complex (possibly nonlinear) relationship, we use nonparametric Bayesian techniques - we
define Gaussian process priors over the functions from latent to data spaces, such that each data
set is modelled as a Gaussian Process Latent Variable Model (GPLVM) [1] where the dependency
structure is captured in terms of shared and private kernels.

2 Generative models for two related data sources

Suppose that we have two related data variablesy1 ∈ ℜm1 andy2 ∈ ℜm2 . We represent each data
source as the sum of two independent components, a shared component with the other data source
that captures the common information, and a private component which captures the information
private to the data source. Assuming that the shared component can be represented in terms of
a shared latent variables ∈ ℜq, q < min(m1, m2), and the private components fory1 andy2

in terms of latent variablesx1 ∈ ℜq1 , q1 < m1 andx2 ∈ ℜq2 , q2 < m2 respectively, the data
generation process is:

y1 = f1(s) + n1(x1)

y2 = f2(s) + n2(x2) (1)

where f1(s) = [f1,1(s), ..., f1,m1
(s)]⊤, f2(s) = [f2,1(s), ..., f2,m2

(s)]⊤ are function val-
ues that share the same inputs, and n1(x1) = [n1,1(x1), ..., n1,m1

(x1)]
⊤, n2(x2) =
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Figure 1: The corresponding graphical model for the unsupervised learning of two related data
variablesy1 andy2. Each data variable consists of two independent components, the shared function
f , and the private functionn.

[n2,1(x2), ..., n2,m2
(x2)]

⊤ are function values of the private latent variables. The corresponding
graphical model is shown in Figure 1.

2.1 Gaussian process priors over shared and private functions

Rather than create parametric forms for the functions, we employ the Gaussian process frame-
work to define priors over the functions. GivenN pairs of data variablesY1 = [y1,1, ...,y1,N ]⊤,
Y2 = [y2,1, ...,y2,N ]⊤, and defining the underlying function values asF1,F2 evaluated at
S = [s1, ..., sN ]⊤, andN1,N2 evaluated atX1 = [x1,1, ...,x1,N ]⊤ andX2 = [x2,1, ...,x2,N ]⊤

respectively, the priors are given by:

p(F1 | S) =

m1
∏

i=1

N (f1,i | 0,Kf1
), p(N1 | X1) =

m1
∏

i=1

N (n1,i | 0,Kn1
) (2)

p(F2 | S) =

m2
∏

i=1

N (f2,i | 0,Kf2
), p(N2 | X2) =

m2
∏

i=1

N (n2,i | 0,Kn2
) (3)

where we have used the notation for a function underlying data dimensioni as e.g. f1,i =
[f1,i(s1), ..., f1,i(sN )]⊤, Kn1

andKn2
are the covariance functions for the private function pri-

ors, with respective inputsX1 andX2, andKf1
andKf2

are the covariance functions for the shared
function priors, with shared inputS.

Given the generative process for the data in (1), and the GP priors in (2) and (3), we integrate over
theF’s andN’s to get the resulting model:

p(Y1 | X,X1) =
1

(2π)
m1N

2 |K1|
m1

2

exp

(

−
1

2
tr(K−1

1
Y1Y

⊤

1
)

)

(4)

p(Y2 | X,X2) =
1

(2π)
m2N

2 |K2|
m2

2

exp

(

−
1

2
tr(K−1

2
Y2Y

⊤

2 )

)

(5)

whereK1 = Kf1
+ Kn1

, andK2 = Kf2
+ Kn2

. Each data stream is modelled by a Gaussian
Process Latent Variable Variable Model, whose covariance function consists of a shared component
(dependent onS) and a private component (dependent on eitherX1 or X2). The dimensions within
each data set are modelled as independently and identicallydistributed, andX1 andX2 capture the
correlations withinY1 andY2 respectively.S captures the correlations betweenY1 andY2. We can
consider any valid (nonlinear) kernel of the inputs, which imply nonlinear mappings ofS, X1, and
X2 to their respective data spaces. Using a nonparametric Bayesian prior over the private functions
underlying each data space is an elegant and flexible prior over underlying private structure of the
data sets. The resulting model is a generalisation of probabilistic canonical correlation analysis
(PCCA) [2], for which the mappings between latent and data space are linear functions; our model
can be viewed as a probabilistic interpretation of nonlinear CCA, where the underlying structure to
the within-set variation is modelled explicitly.
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2.2 Training the model

Learning the model, given two sets of related dataY1 andY2, consists of finding the latent coordi-
natesS,X1, andX and the hyperparametersΘKni

, ΘKfi
, i = 1, 2, of the two covariance functions

K1 andK2 to maximise the log likelihood function of (4) and (5). We usescaled conjugate gradients
and the GPLVM toolbox available fromhttp://www.cs.man.ac.uk/ ˜ neill/fgplvm/ .
The optimisation takes place in two steps; first we jointly optimise S and the parameters of the
shared kernelsΘKfi

, i = 1, 2, then we jointly optimiseX1, X2 and the private kernel parameters
ΘKni

, i = 1, 2. Since the variation in each data set dimension is effectively shared between the
shared latent setS and the private latent setX1 or X2, due toK1 = Kf1(S,S) + Kn1

(X1,X1),
andK2 = Kf2(S,S) + Kn2

(X2,X2), the model is very sensitive to its initialisation: the algorithm
may become trapped in a local minimum and fail to recover the true embedded space. In our exper-
iments we use CCA to initialise the positions ofS, sinceS represents the shared features between
Y1 andY2. To initialise the private latent spaces, we calculate the off-subspace variances forY1

andY2, Ψ1 andΨ2 respectively, which are the noise covariance matrices of probabilistic CCA.
We then findX1 andX2 by projecting the corresponding data set onto the firstq1 andq2 dominant
eigenvectors ofΨ1 andΨ2 respectively.

3 Experiments

In this section we demonstrate the model’s performance on two data sets of images. We separate the
images into a set of latent images. The latent images form a basis of prototype images, consisting
of three sets of images, a set of images that represent the features common to both sets of data, and
two sets of images that represent the features that are only present in their corresponding data set. In
our experiments, we use a variation of the bars problem, which is a test problem defined in [3].

3.1 Bars data

The bars problem is a benchmark task for learning independent components from an image. While
the original problem consists of decomposing a set of imagesinto a set of underlying features (ver-
tical and horizontal bars), in this experiment we consider amodified version of the problem that
illustrates our algorithm’s ability to find both shared and private features for two image sets. We
create two sets of 8× 8 images; 24 examples from each set are shown in Figure 2a. Each image is
generated by first instantiating one of the 8 possible horizontal bars, chosen with equal probability.
For the first set of images (top three rows of Figure 2a), one ofthe 4 possible vertical bars in the left
half of the image is instantiated with equal probability, and similarly, for the second set of images,
(bottom three rows of Figure 2a) one of the 4 possible vertical bars in the right half of the image is
instantiated with equal probability. Producing the two image sets involves a shared process in the
generation of the horizontal bars, and private processes ingenerating the vertical bars.

3.2 Parts-based decomposition of bar images

Our aim is to recover the set of eight shared features - the horizontal bars - and the two sets of four
private features - the vertical bars. One of the difficultieswith the bars data is that each image is
nonlinearly related to the underlying features (the bars),since the superposition of the features to
form the image results in occlusion, or overlap, of the features. Each image can be thought of as a
linear combination of horizontal and vertical bars which isthen passed through a nonlinearity which
models the overlap i.e. for theith image of both data sets:

Y1,i = Gf1
(SWf1

) + Gn1
(X1Wn1

) (6)

Y2,i = Gf2
(SWf2

) + Gn2
(X2Wn2

) (7)

whereGf1
, Gf2

, Gn1
andGn2

are nonlinear output functions,Wf1
∈ ℜq×m1 , Wf2

∈ ℜq×m2 ,
Wn1

∈ ℜq1×m1 andWn2
∈ ℜq2×m2 are mixing matrices. For our experiment, we use polynomial

covariance functions of degree 2 for each process to reflect our knowledge about the data generation
process; the polynomial covariance function is given by:

k(xi,xj) = α
(

wx⊤

i xj + γ
)2

+ β−1δi,j (8)
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with hyperparametersΘKpoly
= {α, β, γ, w}, whereα is a scale parameter,β is the inverse noise

variance,w controls the scale of the dot product component, andγ is a bias parameter.

We use an 8-dimensional shared latent spaceS, and a 4-dimensional private latent spacesX1 and
X2 (where the columns are the underlying images). We use a training data set of 200 pairs of images
such that the 200 columns ofY1 ∈ ℜ64×200 andY2 ∈ ℜ64×200 are8 × 8 images that contain a
vertical bar in the left and right half of the image respectively, and a horizontal bar. We also constrain
the latent points’ values to lie between 0 and 1, such that they correspond to underlying image pixels.
Each latent pointx is reparameterised asx′, using a sigmoid transformx = log(x′/(1 − x′)),
such that the optimisation takes place in a transformed space. Figure 2b shows the discovered latent
images ( the columns ofS, X1, andX2), after training the model on the 200 pairs of training images.
As can be seen, the model manages to decompose the training images into the sets of underlying
shared and private features.

3.2.1 Reconstruction of the images

In this section, we show how the shared and private latent images which we found in the previous
section can be used to reconstruct the original images. Thisinvolves finding the posterior distri-
butions of the underlying private and shared functions given the dataY1 andY2, and the latent
featuresS, X1 andX2. This investigates how well the algorithm is able to model the overlap be-
tween features. Figure 2e shows the first 24 reconstructed images for each data set, given by the
posterior means forY∗

1 = F∗
1 + N∗

1 andY∗
2 = F∗

2 + N∗
2 The top three rows are reconstructions

for the first set, and the bottom three rows are reconstructions for the second set. The reconstructed
images are a good approximation to the original images shownin Figure 2a. The reconstructions
for the second set model the overlap between bars more accurately than for the first set. Figure 2c
and 2d shows the shared and private components of each image.(c) shows the posterior mean of the
shared functionsF∗

1
(top three rows) andF∗

2
(bottom three rows), and (d) shows the posterior mean

of the private functionsN∗
1

(top three rows) andN∗
2

(bottom three rows). An interesting observation
is that in some of the images, a pixel is missing from one of thebars. This is due to the latent images
being put through the nonlinear map implied by the polynomial covariance function. This aids in
the successful reconstructions of the original image; the overlap between bars is taken into account
by removing a pixel at the point in the image where the bars intersect.

4 Discussion

We have reviewed a probabilistic generative model that models two related data sources in terms of
shared and private latent spaces. Each data source is modelled as a GPLVM, which ‘maps’ from
the shared and latent spaces to the data space. The model can be viewed as a nonlinear version of
probabilistic canonical correlation analysis. Similar work has been carried out independently in [5].
We demonstrated the model’s performance on a parts-based decomposition task on two related sets
of images, where the images were decomposed into underlyingfeatures that were shared between
the data sets, and private to each data set. Other work includes using automatic relevance determi-
nation (ARD) methods, as suggested in [6] from the neural networks literature, in the covariance
functions to automatically determine the dimensionality of the latent spaces. Future work includes
investigation of different initialisation schemes for themodel, and experiments with stereo image
data sets.
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(a) (b)

(c) (d)
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Figure 2: (a) Examples of the training images. The top three rows are from the first data set (the first
24 columns ofY1), and the bottom three rows are from the second data set (the first 24 columns
of Y2). Each image consists of a horizontal bar chosen at random from the 8 possibilities, which
corresponds to the process shared by both sets. The first dataset contains a vertical bar chosen at
random from the left half of the image, and the second data setcontains a vertical bar chosen from
the right half of the image. (b) The recovered latent images.The first two rows correspond to the 8
columns ofS, and are the shared features i.e. the horizontal bars. The third row corresponds to the 4
columns ofX1, the vertical bars in the left half of the image, and the fourth row corresponds to the 4
columns ofX2,the vertical bars in the right half of the image.The posterior mean of the underlying
shared functions is shown in (c) for the first 24 images ofY1 (top three rows) andY2 (bottom three
rows). (d) shows the posterior mean of the underlying private functions forY1 (top three rows) and
Y2 (bottom three rows). (e) 24 reconstructed images from the first data setY1 (top three rows) and
the second data setY2 (bottom three rows)
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