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Abstract

We introduce an expectation maximization-
type (EM) algorithm for maximum likelihood
optimization of conditional densities. It is
applicable to hidden variable models where
the distributions are from the exponential
family. The algorithm can alternatively be
viewed as automatic step size selection for
gradient ascent, where the amount of compu-
tation is traded off to guarantees that each
step increases the likelihood. The tradeoff
makes the algorithm computationally more
feasible than the earlier conditional EM. The
method gives a theoretical basis for extended
Baum Welch algorithms used in discrimina-
tive hidden Markov models in speech recogni-
tion, and compares favourably with the cur-
rent best method in the experiments.

1. Introduction

We discuss optimizing generative models for condi-
tional probability densities p(c|x), that is, models that
discriminate the values c of a dependent variable C,
conditional on the values of an independent variable
X. In practice, such models are currently optimized
with algorithms effectively boiling down to gradient as-
cent. The problem common to gradient ascent-based
algorithms is that the update step length needs to be
selected empirically. Too optimistic step lengths may
overshoot the local optimum resulting in a decrease of
the objective function (and hence slower convergence),
whereas too pessimistic step lengths lead to slow con-
vergence. So-called second order gradient ascent algo-
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rithms take into account the curvature of the model
and adjust the step length accordingly. The automa-
tion comes with a cost however, since inversion of the
Hessian matrix of the model is required.

The most common algorithm used for optimizing hid-
den variable models is the expectation-maximization
(EM) algorithm. It operates by constructing a global
lower bound for the objective function, likelihood
where the hidden variables have been marginalized
out, with the aid of Jensen’s inequality. The bound
is tight at the current values of the model parameters,
θ̂, and its gradient equals that of the objective function
at θ̂. Since the lower bound is global, it is guaranteed
that optimizing the bound always increases the value
of the objective function. Plain EM could be applied
in our case to modeling of the joint density of the data
pairs (x, c).

Since the gradients of the objective function and its
lower bound are equal at θ̂, the EM can be interpreted
as a kind of gradient ascent algorithm with automatic
selection of step length.

The plain EM algorithm is not applicable to optimiz-
ing conditional likelihoods, where the objective func-
tion is a rational function. It is possible to construct a
lower bound by forming a global lower bound for the
numerator and a global upper bound for the denom-
inator. The approach was rigorously studied in (Je-
bara & Pentland, 2001; Jebara, 2001). Unfortunately
the resulting formulas turned out to be very compli-
cated which hinders their practical use, and obtaining
even a conservative estimate of the bound is compu-
tationally demanding (Jebara, 2001). Moreover, the
bounds allow only a very small step size which makes
optimization slow and hence further increases compu-
tational demands.

An alternative family of algorithms, called extended
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Baum Welch, EBW (Gopalakrishnan et al., 1991;
Povey et al., 2003), is the current state-of-the-art in
speech processing with hidden Markov models. During
the last fifteen years, considerable experimental effort
has been made in the field in order to find EM-type
update rules that maximize the discriminative power
of the models. Although there now exists a consensus
on what the update formulas should look like, backed
up with good heuristics for selecting optimal regular-
ization, no solid theory that explains the formulas has
been presented yet. The EBW can be easily extended
to optimize mixture models, for example the Gaussian
mixture model (Klautau, 2003), by assuming that in-
stead of time series, the data consists of N samples of
length one. This extension has been coined discrimi-
native EM by Klautau (2003).

In this paper we introduce a discriminative EM-type
algorithm that relies on an alternative derivation of
the global lower bound for conditional probability den-
sities, which is perhaps more intuitive than (Jebara
& Pentland, 2001). The derivation suggests a practi-
cal algorithm that trades off the globality of the lower
bound for computational efficiency and simpler update
formulas. The resulting update formulas are very close
to current extended Baum Welch formulas, for which
they give a solid basis for choosing the currently partly
heuristic step length. Note that none of the currently
existing computationally feasible EM-type algorithms
are guaranteed to always increase the likelihood. We
validate our tradeoff in two different applications.

The computational complexity of the resulting dis-
criminative EM is somewhat bigger than the ordinary
EM (O(S3T 2) vs. O(S2T )) algorithm. The algorithms
can be used in the same way.

2. Background

In this Section, we will first discuss the exponential
family distributions in order to introduce our nota-
tion, and to recall the basic characteristics of expo-
nential families which will be needed in deriving the
discriminative EM algorithm below.

2.1. Exponential family distributions

Exponential family distribution can always be written
in the canonical form

p(x|θ) = exp
(
T (x)T θ − log Z(θ)− log Y (x)

)
, (1)

where T (x) are the (observed) sufficient statistics of
x, θ the natural parameters, and log Z(θ) is the con-
vex normalization term (partition function). Table 1
gives representations of the Gaussian and multinomial

distributions, the exponential family distributions ap-
plied in this paper.

Table 1. Canonical representation of some exponential
family distributions.

Gaussian Multinomial
T (x)

(
x2 x

)
nk

θ
(
− 1

2σ2
µ
σ2

)
log πk

log Z − µ2

2σ2 − log σ log (
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πk)
log Y − 1

2 log 2π log N !−
∑

k log nk!

Two key definitions needed here are the dual parame-
ter µ and covariance matrix Σ (Buntine, 2002),1

µ = 〈T (x)〉p(x|θ) = ∂ log Z
∂θ , (2)

Σ = 〈(T (x)− µ) (T (x)− µ)T 〉p(x|θ) = ∂2 log Z
∂θ∂θ = ∂µ

∂θ .(3)

It is always possible to find a θ∗ corresponding to
the sufficient statistics T (x) by solving a mapping
∂
∂θ log Z(θ)

∣∣
θ=θ∗

= µ(θ∗) = T (x). This leads to an al-
ternative way of writing exponential models (see Efron
(1978), for example) by p(x|θ) = 1

Z e−B(θ,θ∗), where
B(θ, θ∗) is the Bregman divergence

B(θ, θ∗) = log Z(θ)−log Z(θ∗)−µ(θ∗) (θ − θ∗) . (4)

In this respect the Bregman divergence is the natural
distance measure for the selected exponential family.

For all exponential family models, the Bregman diver-
gence is always non-negative due to convexity of the
log-partition function. The second derivative of Breg-
man divergence is the Fisher information, Σ. Notice
also that B(θ̂, θ̂) = ∂

∂θ B(θ, θ̂)
∣∣∣
θ=θ̂

= 0.

Due to the convexity of the log-partition function
log Z(θ̂), it is always possible to form a log-linear up-
per bound for exponential family distributions, having
the form

T (x)T θ − log Z(θ)− log Y (x) ≤

(T (x)− µ(θ̂))T θ − log Z(θ̂) + µ(θ̂)θ̂ − log Y (x).
(5)

2.2. Joint likelihood hidden variable models

In (marginalized) joint likelihood hidden variable mod-
els we optimize

log p(y|θ) = log
∑

s

p(y, s|θ) , (6)

1For compactness of our formulas we denote
〈T (x)〉p(x|θ) = Ep(x|θ) {T (x)}
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where y is the data, s the values of hidden variables,
and θ the model parameters. In the following we as-
sume that p(y, s|θ) is of the exponential family.

The objective function of the EM algorithm is a global
lower bound for log p(y|θ), obtained with the aid of
Jensen’s inequality (see Buntine (2002)):

log p(y|θ) = log
∑

s

p(y, s|θ) ≥ F(θ)

= log p(y|θ)−KL(q(s)||p(s|y, θ)) (7)
= 〈log p(y, s|θ)〉q(s) + H(q(s)) , (8)

where KL(||) denotes the Kullback-Leibler divergence
and H() the entropy. The globality of the lower bound
is easy to see from Eq. (7), since KL(||) is always ≥ 0.

The EM algorithm operates by iteratively minimizing
the Kullback-Leibler divergence of equation (7) with
respect to the distribution over the hidden variable,
q(s), at θ = θ̂, and then optimizing the likelihood (8)
with respect to θ, keeping q(s) fixed. In an EM algo-
rithm there is always a distribution q(s) such that the
bound is tight (equality),2 making the bound tangen-
tial to the likelihood at θ = θ̂ (Buntine, 2002).

2.2.1. Connection to gradient ascent

We will next show a simple connection between the
EM algorithm and gradient ascent. If we assume that
all the probabilities within the model are expressed
using exponential family distributions, the derivative
of the model is

∂

∂θ
log
∑

s

p(y, s|θ) =
∑

s

p(s|y, θ){Ts(x)− µ(θ)}, (9)

by using Eq. (2), and denoting sufficient statistics as-
sociated with the current assignment s of hidden vari-
ables by Ts(x). It can be shown that the EM update
is obtained when we compute the distribution p(s|y, θ̂)
(so called Expectation phase), and set the derivative
to zero,

µ(θ) =
∑

s p(s|y, θ̂)Ts(x)∑
s p(s|y, θ̂)

. (10)

Gradient ascent, on the other hand, operates by iter-
ating

µ(θ) = µ(θ̂) + Γ−1 ∂

∂θ
log
∑

s

p(y, s|θ),

2If the distribution family q(s) is not rich enough to

include p(s|y, θ̂), i.e. the Kullback-Leibler divergence of
equation (7) cannot generally be made to vanish, we have
a variational algorithm, where q(s) is the variational ap-
proximation. EM algorithm is thus a special case of the
variational method.

where Γ−1 is a small value. Inserting Eq.(9) and eval-
uating the derivative at θ̂, we may solve for µ(θ), re-
sulting in

µ(θ) =
Γµ(θ̂) +

∑
s p(s|y, θ̂)Ts(x)

Γ +
∑

s p(s|y, θ̂)
. (11)

Gradient ascent thus gives us a version of the EM
where the update step length is regularized with Γ.

2.3. Conditional likelihood hidden variable
models

In a discriminative model the set of observations Y is
divided into two classes, Y = C ∪X, where C are the
variables over which we want to discriminate and X
are the remaining observations. The likelihood of the
discriminative model is

log p(c|x, θ) = log p(y|θ)− log p(x|θ) . (12)

Discriminative models are usually optimized using gra-
dient descent methods.

Extended Baum-Welch. In speech processing an
extended Baum-Welch algorithm has given the best
results so far. The algorithm was first presented
by Gopalakrishnan et al. (1991) for multinomial ob-
servation distributions, and extended by Normandin
(1991) to Gaussian distributions. The algorithm can
be interpreted to lower bound both log p(y|θ) and
log p(x|θ) using Jensen’s inequality. Using Eq. (7), the
result is

log p(y|θ)−KL(qC(s)||p(s|y, θ))+
− log p(x|θ) + KL(qF (s)||p(s|x, θ)) ,

where qC(s), qF (s) denote the hidden variable distri-
butions in cases where c is known (“clamped”), or
marginalized out (“free”), respectively. Since the last
term is positive, globalness of the lower bound can-
not be guaranteed. Therefore, some regularization is
needed in the update formulas, resulting in a func-
tional form similar to Eq. (11). Gopalakrishnan et al.
(1991) present a formula for computing a regulariza-
tion value Γ which is large enough such that conver-
gence can be guaranteed. However, the resulting value
is so large that even in the original publication approx-
imations needed to be made for practical implementa-
tion of EBW. As noted in Section 2.2.1, a large reg-
ularization coefficient reduces the EBW to a gradient
ascent-type optimization algorithm which is known to
converge to a local optimum. Since the original pub-
lication, choosing the proper amount of regularization
has been under considerable debate. See Woodland
and Povey (2002) for the most recent best heuristics.
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Conditional Expectation Maximization. To
construct an objective function for EM that maximizes
the conditional likelihood (12), we need a global lower
bound.

In (Jebara & Pentland, 1999; Jebara & Pentland,
2001) this is achieved by using a lower bound F(θ)
for log p(y|θ), as in the EBW, and an upper bound
G(θ) for log p(x|θ). The EM algorithm for the dis-
criminative model then follows straightforwardly from
the lower bound given by the difference,

log p(c|x, θ) ≥ F(θ)− G(θ) . (13)

The problem of discriminative training thus reduces to
finding a global upper bound for log-likelihood.

In conditional EM, Jebara and Pentland (1999) bound
the log p(x|θ) by the function itself (plus a constant),
p(x|θ)+1, and thus achieve a global lower bound. How-
ever, the resulting update rules are complicated, which
hinders their practical use.

The update rules would be far simpler if a form
of Jensen’s inequality could be used to derive an
upper bound, since instead of log

∑
exp(T (x)θ +

log Z(θ) + . . . ) we would then have functions of the
type

∑
log exp(T (x)θ + log Z(θ) + . . . ), where log exp

cancel each other. The functional form of the upper
bound would then be similar to the lower bound ob-
tained using the ordinary Jensen inequality.

Jebara and Pentland (2001) solve the problem by tak-
ing a trial function which has the same functional form
as the lower bound:∑

s

q(s) [T (y)Θ− log Z(Θ)]− log Y (y),

and solve its coefficients q(s), T (y), log Y (y) so that
(i) the bound is tight at θ̂ (thus getting log Y (y)), and
(ii) has the same derivative as the log-likelihood at θ̂
(getting T (y)).

Inserting log Y (y) and T (y), and regrouping the vari-
ables results in

log p(x|θ̂) +
∑

s

p(s|x, θ̂)(T (x)− µ(θ̂))(θ − θ̂)

+ q(s)B(θ, θ̂) ,

(14)

where T (x) and µ(θ̂) are the observed and expected
sufficient statistics, respectively. The term B(θ, θ̂) is
the Bregman divergence between θ and θ̂. Jebara and
Pentland (2001) proceed by mapping the Bregman dis-
tances to a parable (since every convex function has a
diffeomorphic mapping to a parable), and solve the

remaining values, q(s). It turns out that the map-
ping need not be solved explicitly. However, the map-
ping affects the resulting update rules by restricting
the allowed values for q(s), making optimisation dif-
ficult. Furthermore, although guaranteed, the speed
of convergence and especially the computational de-
mands reported in (Jebara, 2001) leave room for im-
provement.

3. Discriminative Expectation
Maximization

We will next derive a global upper bound for p(x|θ)
by inspecting the first and second derivatives of the
objective function, that is, the log-likelihood, and its
Jensen lower bound.

3.1. Functional form

We begin from the same functional form as Jebara
and Pentland (2001), shown in Equation (14). The
choice can be justified by its more flexible form than
the normal Jensen lower bound. Namely, if we choose
q(s) = p(s|x, θ̂), we get the familiar result:∑

s

p(s|x, θ̂)
[
T (x)T (θ − θ̂)− log Z(θ) + log Z(θ̂)

]
+

+ log p(x|θ̂) , (15)

which is the Jensen lower bound expressed in terms of
Bregman divergences. This also motivates the selec-
tion of the trial function (14).

The new result in this paper follows from realizing
that q(s) does not necessarily have to be a distribu-
tion. Furthermore, q(s) affects neither the value nor
the derivative of the trial function at θ̂ (since B(θ, θ̂) is
zero in both cases). The term q(s)B(θ, θ̂) determines
the curvature of the trial function, however. We will
next show that by choosing the curvature properly we
can get new bounds for the objective function.

3.1.1. Curvature considerations

The second derivative (i.e., curvature) of log likelihood
is

∂2 log p(x|θ)
∂θ∂θ

= C(θ, µ)− 〈Σ〉p(s|θ) . (16)

Here C is the correlation matrix over hidden states,

C(θ, µ) =
∑

s

(
〈(Ts(x)− µ)(Ts(x)− µ)T 〉p(s|x,θ)

−〈(Ts(x)− µ)〉p(s|x,θ)〈(Ts(x)− µ)T 〉p(s|x,θ)

)
, (17)

where we denote by Ts(x) the sufficient statistics as-
sociated with the assignment s of the hidden vari-
ables. The 〈Σ〉p(s|θ) is the Fisher information matrix.
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Since both C(θ, µ) and Fisher information are positive-
semidefinite, the resulting curvature may be positive
or negative, but it is always upper bounded by C(θ, µ)
and lower bounded by the (negative) Fisher informa-
tion matrix.

The curvature of the Jensen lower bound (15) is de-
fined by the second derivative of the Bregman diver-
gence, the (negative) Fisher information −〈Σ〉p(s|x,θ̂).
The lower bound is thus concave, which makes the op-
timisation problem easy to solve, and its curvature is
defined only by the model and q(s), not data.

The sufficient condition for the globality of an upper
bound is that it must have a larger curvature than
the objective function (Boyd & Vandenberghe, 2004).
Hence a valid upper bound should have a larger cur-
vature than the correlation matrix C(θ, µ).

3.2. Upper bound

We can now find the upper bound by using a trial
function G(θ), having a similar functional form as (14):

log p(x|θ) ≤ G(θ) = log p(x|θ̂) +

+
∑

s

p(s|x, θ̂)(T (x)− µ(θ̂))(θ − θ̂) + ΛD(θ, θ̂) , (18)

where Λ is an appropriate constant and D(θ, θ̂) is a
distance function. We may choose D quite freely, as
long as it is a convex function (which is equivalent to
having a diffeomorphic transformation to a parable).
The constant Λ is chosen to be large enough, such that
the curvature of ΛD bounds the curvature of C from
above. Then Eq. (18) always remains an upper bound.
The sufficient conditions for D are:

1. D(θ̂, θ̂) = 0,

2. ∂
∂θ D(θ, θ̂)

∣∣∣
θ=θ̂

= 0,

3. ∂2

∂θ2 D(θ, θ̂) > 0.

Upper bound for Gaussian distribution. For
simplicity, let us first consider the Gaussian distribu-
tion. We select the Bregman divergence of the Gaus-
sian partition function as the distance function, i.e.,
D(θ, θ̂) = 1

2 (θ − θ̂)2. The curvature of the trial func-
tion is then constant,

∂2G(θ)
∂θ∂θ

= Λ1 . (19)

Upper bound for the multinomial distribution.
Multinomial distribution is more complicated than the

Gaussian, since the curvature of the Bregman diver-
gence is not constant. For example in the binomial
case the curvature will be ∝ µ(1 − µ), being zero at
µ = {0, 1}, and hence cannot provide an upper bound
for C(θ, µ). Moreover, using the same distance func-
tion as in the Gaussian case would result in unneces-
sarily complicated update formulas, since the mapping
from natural parameters to dual parameters is not the
identity function (but µ = eθ instead), as it is for
Gaussians.

For these reasons, we use the function

D(µ, µ̂) =
1
2

(√
µ

µ̂
−

√
µ̂

µ

)2

.

The distance function fulfills the required conditions
for D, upper bounds the true Bregman divergence for
the multinomial distribution, and is symmetric around
µ̂. When this distance function is used, the update
rules result from solving a second order polynomial.

3.2.1. Choosing Λ

After choosing the distance function, we will have to
find a proper value for the Λ. The distance functions
D we have used have the curvature of 1 at θ̂. It is
therefore the task of the constant Λ to provide the
upper bound for C. This can be fulfilled by requiring
that Λ is no less than the largest eigenvalue of C(θ, µ).

The value of C(θ, µ) in (17) depends on the parameters
θ. Since we assumed that p(s, x|θ) is within the expo-
nential family, we can form an upper bound C(θ, µ̂),
which is valid for all θ, by constructing a log-linear up-
per bound at µ̂ for each distribution in the likelihood
p(s, x|θ) (i.e., we use the inequality (5) to construct
the upper bound).

A global upper bound would then result from finding
the worst-case hidden variable assignment. To be able
to calculate a practical upper limit for the correlation
we approximate p(s|x, θ) by p(s|x, θ̂) in the following.
This is the only approximation we make. As a result,
we will end up computing the upper bound for C, at
the current parameter values µ̂, with the current hid-
den variable distribution p(s|x, θ̂).

Since the largest eigenvalue of C(θ, µ) is bounded from
above by the trace of the matrix, we obtain a (conser-
vative) upper bound by setting

Λ = Tr C . (20)

The upper bound parameter Λ can be computed sep-
arately for all block-diagonal elements of C.
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About the approximation. It is possible to find
a global worst-case estimate for the curvature by con-
sidering all possible distributions for p(s|x, θ) (an up-
per bound can be found by quadratic programming
in O(ST 4)). This would result in an alternative
derivation of the bound derived by Jebara and Pent-
land (2001). By switching to a local approximation
p(s|x, θ̂), we trade off the globality of the bound to a
computationally more feasible solution. This tradeoff
is justified in practice by the extended Baum Welch,
since for the case of Gaussian distributions we ar-
rive at the same update formulas. Furthermore, our
approach gives a justification to the currently state-
of-the-art heuristics used for optiming discriminative
HMMs (Woodland & Povey, 2002). By using the ap-
proximation, the computational complexity in the case
of HMMs is O(S3T 2), where S is the number of hid-
den states and T the length of the time sequence. The
complexity is thus of the order of ST larger than in
the ordinary EM algorithm (Rabiner, 1989), but still
manageable.

4. Discriminative Hidden Markov
Model

A hidden Markov model (HMM) is defined formally as
a 5-tuple (s1:T ,Y ,Π,A,B), where s1:T = {s1, . . . , sT } is
a finite set of N states over a time sequence given by
t = 1, . . . , T , Y = {y1, . . . , yT } are the observations,
Π = {π1, . . . , πN} are the initial state probabilities,
A = {aij}i,j∈{1,...,N} are the state transition probabil-
ities, and B = {bi(Y )} are the emission probabilities.
We use θ = {Π, A, B} to denote all model parameters.

The HMM is an exponential family mixture model
where the path over the states s1:T has the role of
a hidden variable in Eq. (6) of the EM algorithm.
See (Rabiner, 1989) for the use of HMMs for joint like-
lihood maximization.

The log likelihood of a discriminative HMM is

LD(θ) = log p(c|x1:T , θ) =
log p(y1:T |θ)− log p(x1:T |θ) .

(21)

The EM algorithm for discriminative HMM pro-
ceeds as follows: First we find the path probabili-
ties corresponding to log p(y1:T |θ) (“clamped model”)
and log p(x1:T |θ) (“free model”) using the forward-
backward algorithm, resulting in the expressions for
the clamped and free state probabilities, γC,t(i) and
γF,t(i), and the transition probabilities, ξC,t(i, j) and
ξF,t(i, j), respectively.

Maximization of the (global) lower bound with respect
to the model parameters θ then results in update rules;

see Woodland and Povey (2002) for EBW updates and
appendix A for discriminative EM updates.

4.1. Choosing Λ for HMMs

Upper bounding the correlation matrix for HMMs
is not trivial. The largest eigenvalue of C(θ, µ) is
bounded from above by the trace of the matrix. To
compute the trace we need to define the probability
At,τ (i) = p(sτ = i|st = i, x1:T , θ̂). This probability
can be expressed using a matrix product of the quan-
tities γt(i) = p(st = i|x1:T , θ̂) and ξt(i, j) = p(st+1 =
j|st = i, x1:T , θ̂), given by the forward-backward algo-
rithm. We obtain At,τ (i) = (ξt × ξt+1 × . . .× ξτ−1)ii,
where t < τ , matrix multiplication is denoted by ×,
and At,t(i) = 1 and Aτ,t(i) = At,τ (i). We further
define Bt,τ (i) = At,τ (i) − γτ (i) and express the trace
as

Tr C =
∑
i,t,τ

γt(i)Bt,τ(i)(Ti(xt)− µi)(Ti(xτ )− µi) .

The trace can be computed easily and efficiently in a
loop of size O(S3T 2), with O(T 2) matrix multiplica-
tions. See appendix A for the resulting update formu-
las.

The step length of the discriminative EM is deter-
mined mainly by Λ. It is therefore useful to know
its order of magnitude. Assume that our data has
a typical correlation time, TC . That is, the corre-
lation is weak, Bt,τ (i) ≈ 0, if |τ − t| > TC , and
strong otherwise, Bt,τ (i) ≈ 1, where |τ − t| < TC .
A typical value of the trace is thus of the order
Tr C ∝ TTCS−1E

(
(T (x)− µ)2

)
, where we have used

γt(i) ≈ S−1. The trace should therefore scale linearly
with respect to the length T of the time series.

5. Experiments

We compared convergence properties of the EBW and
our algorithm using the log likelihood of the test data
set as a measure of performance, i.e. the perplexity

perp. = e−
L
N , where L =

N∑
i=1

log P (C = c(i) | xi
1:T , θ) ,

where we denote by c(i) the class associated with the
time series xi

1:T , and θ denotes the parameters of the
model under evaluation. N is the size of the test set.

Experiments were carried out with two different data
sets. The first was the homo sapiens splice sites data
set3, consisting of nucleic acid sequences of introns and

3Available at http://www.sci.unisannio.it/
docenti/rampone/.
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exons. A subset of 100 introns and 100 exons with
length of less than 135 base pairs was selected and
split into an equal-sized training and test data set.

The second data set consisted of eye movement mea-
surements. The task here was to predict the known
relevance of a text associated with the measured eye
movement data.4 The features computed for the
HMMs were the same as the example features com-
puted by the competition organizers (Salojärvi et al.,
2005). A split into training and validation data sets is
provided in the competition.

For the Extended Baum-Welch update formulas we
used the heuristics given by Woodland and Povey
(2002). Since the objective functions of both algo-
rithms are the same, and since the interest here lies
only in comparing the convergence of the algorithms,
we did not tune the HMMs for either of the tasks. Each
class was modelled simply with two hidden states, re-
sulting in a 4-state HMM for the exon data, and a
6-state HMM for the eye movement data.

The perplexity through iterations is plotted in Fig-
ure 1. For the exon data the EBW overshoots the
minimum at an early stage. The algorithm then sets
to a different minimum which is different from the min-
imum found by the discriminative EM. With the eye
movement data, the EBW overshoots the minimum at
a later stage whereas the discriminative EM converges
nicely.

In both cases the EBW with heuristics tuned for
speech recognition exhibits oscillatory behavior. It
therefore seems that the data sets require different
heuristics. Our approach makes such tuning unnnec-
essary.

6. Discussion

We introduced an EM-type algorithm that can be used
to maximize conditional likelihoods of hidden variable
models. As an example, we derived update formu-
las for discriminative hidden Markov models, and used
them in two applications. Our results improve upon
the earlier work by providing a practical solution with
a considerably smaller time complexity. Our work ad-
ditionally gives a sound theoretical basis for the ex-
tended Baum Welch update rules used widely in speech
recognition. We validated our method by observing
the convergence of hidden Markov models using two
publicly available data sets.

4The data is available for competititors at http://www.
cis.hut.fi/eyechallenge2005/
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Figure 1. Perplexity of the validation data set. Top: Exon
data. Bottom: Eye movement data Solid line: discrimina-
tive EM, dashed line: extended Baum-Welch.
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A. Update formulas for discriminative
HMM

Priors

π(i) =
f

2g
+

1

|2g|
√

f2 + 2λπ̂(i)g

f =
∑

n

γn
C,1(i) − γn

F,1(i)(1 − π̂(i))

g = N +
Λ

2π̂(i)
− Γ

Λ = N −
∑
i,n

(
γn

F,1(i)
)2

.

Select Γ such that
∑

i π(i) = 1. Here i is an index over
hidden states and n over sequences. A lower bound for Γ is
given by requiring that the discriminant f2 + 2λπ̂(i)g ≥ 0.

Gaussian observation densities

µG
bi

(x) =

∑
n,t ηn

t T (xn
t ) + µ̂bi

(
Λ +

∑
t γn

F,t(i)
)

Λ +
∑

n,t γn
C,t(i)

,

Λ =
∑
n,t,τ

γn
F,t(i)B

n
t,τ (i) (T (xn

t ) − µ̂bi) (T (xn
τ ) − µ̂bi) ,

Bn
t,τ (i) = An

t,τ (i, i) − γn
F,τ (i) , ηn

t = γn
C,t(i) − γn

F,t(i) .

Multinomial observation densities

µM
bij

(x) =
f

2g
+

1

|2g|

√
f2 + 2Λµ̂bij g

f =
∑

t

(
γn

C,t(i) − γn
F,t(i)

)
δ(xn

t , j) + µ̂bij

∑
t

γn
F,t(i)

g =
∑

t

γn
C,t(i) +

Λ

2µ̂bij

− Γ

Λ =
∑

j

∑
t,τ

γn
F,t(i)B

n
t,τ (i)ωn

tijω
n
τij ,

Bn
t,τ (i) = An

t,τ (i, i) − γn
F,τ (i) , ωn

tij = δ(xn
t , j) − µ̂bij .

Select Γ such that
∑

j µbij = 1.

Transitions

aij =
f

2g
+

1

|2g|
√

f2 + 2Λâijg

f =
∑
n,t

ξn
C,t(i, j) − ξn

F,t(i, j) + âij

∑
n,t

γn
F,t(i)

g =
∑
n,t

γn
C,t(i) +

Λ

2âij
− Γ

Λ =
∑
n,j

∑
t

∑
τ>t

2ξF,t(i, j)At+1,τ (j, i)ξF,τ (i|j)

−2âijξF,t(i, j)At+1,τ (j, i)

−2âijγ
n
F,t(i)At,τ (i, i)ξF,τ (i|j) + 2γn

F,t(i)At,τ (i, i)â2
ij

+
∑

t

ξF,t(i, j)(1 − 2âij) + γn
F,t(i)(1 + â2

ij)

+
∑

j

(∑
n,t

ξF,t(i, j) − âijγ
n
F,t(i)

)2

.

Select Γ such that
∑

j aij = 1. Here t and τ are indexes
over the length of the time sequence n.

B. Extended Baum-Welch vs.
discriminative EM

By selecting Γ = Λ+
∑

t γF,t(i), we get the extended Baum-
Welch update rule

µ
(Gauss)
bi

(x) =

∑
t (γC,t(i) − γF,t(i)) T (x(t)) + µ̂biΓ∑

t γC,t(i) − γF,t(i) + Γ
.

The heuristic by Woodland and Povey (2002) for selecting

Γ is to choose max (
∑

t γF,t(i), 2B), where B is the mini-

mum value such that the updated variance is positive.


