
T-61.231 Principles of Pattern Recognition
Answers to exercise 9: 25.11.2002

1. L = {anb|n = 1, 2, . . .}

a)
VT={a, b}
VN={S, A}
P={S → aA, A → aA|b}

b) A parser can be made for example with a recursive descent approach:

#include <stdio.h>

void A() {

switch (getchar()) {

case ’a’:

A();

break;

case ’b’:

break;

default:

puts("String not valid");

exit(0);

}

}

int main() {

printf("Please enter input string:\n");

switch (getchar()) {

case ’a’:

A();

break;

default:

puts("String not valid");

exit(0);

}

if (getchar()==’\n’)

puts("String is ok");

else

puts("String not valid");

exit(0);

}

Some example runs:

Please enter input string:

ba

String not valid

Please enter input string:

aab

String is ok



Please enter input string:

aaaaa

String not valid

Please enter input string:

aabb

String not valid

2.
VT={a, c, e}
VN={G, Q, E, H, I, A, C, J, R}
P={S → GQ, S → QG, G → EH, H → AIA, I → CJC, J → ACA,

Q → ER, R → CAC, A → a, C → c, E → e}

The resulting parsing (derivation) trees are

G

E H

e A I A

JCa a

C AA

ca a

cc

C

Q

E R

e C A C

c a c

S

Q

E R

e C A C

c a c

G

E H

e A I A

JCa a

C AA

ca a

cc

C

S

Thus the grammar accepts the strings ’eacacacaecac’ and ’ecaceacacaca’.

From the figure, the parts string can be read as ’aceacacacaec’. Since the part is obviously
circular, the question is actually whether we can choose the starting point so that the
resulting string is one of those produced by the grammar. This can be done, as by moving
the two first characters in the read string to the end, the string becomes ’eacacacaecac’,
which is exactly the same as the first string from the grammar.

3. For this task a bottom-up parsing approach is most useful. Now the question is, can we
change the string to the starting symbol by using the production rules?

The read string is babcbabdbabcbabd. To check this,

b a b c b a b d b a b c b a b d

This side is the same
as the left side

bArm bArm

Armb Armb

Arm c Arm

Rightarm

Armpair Side

Armpair Armpair

S

⇒ The grammar accepts this string



Now lets move the staring point by one to produce abcbabdbabcbabdb:

bArm

Armb

c Arm

Rightarm

Armpair Side

Armpair Armpair

S

a b c b a b d b a b c b a b d b

Arm

Armb

Arm

SidebArm

Armb

Arm

bArm

Armb

c Arm

Rightarm

Armpair Side

⇒ The grammar accepts this string

And still by one, to bcbabdbabcbabdba:

b c b a b d b a b c b a b d b a

b c b a b d b a b c b a b d b a

Side Arm

Side

NOT ALLOWED

b c b a b d b a b c b a b d b a

Side

Side

NOT ALLOWED

bArmSide

NOT ALLOWED

⇒ The grammar does not accept this string

Note: You can get ’a’ only from the rule ’Arm → a’ and ’d’ only from the rule ’Side → d’



4. With attributed graphs nodes correspond to the primitives and arcs to the relations be-
tween the primitives.

Gi = {Ni, Pi, Ri}

Where Ni is a node set, Pi a node property set and Ri a set of node relations.

a b e

a

b

e

−

−

−

z

z

w

x

x

w
b

a e

w

z x
22:

e
b a

a b e

a

b

e

−

−

−

z

z

w

w

w wb

a e

w

z w
e

25:

ba

e 3

e2

e 1

e 1 e2 e 3 e 1

e2

e 3

e2e 1 e 3b

b
b

u

u u

y
vv

39:
b −

−

−

−

v v

v

v

y

y

u u

u

u u

u

Isomorphism for attributed graphs is defined as two attributed graphs being isomorphic
if there is a 1:1 and onto assignment of nodes so that all nodes are compatible. In other
words, one graph can be transformed to the other by simply reindexing the nodes.

For the graphs for characters 22 and 25, the graphs are not isomorphic due to the fact
that the node relations do not match.

None of the graphs are isomorphic with the graph for character 39, as the number of nodes
does not match.


