Tik-61.231 Principles of Pattern Recognition

Answers to exercise 8: 18.11.2002

1. A grammar $G=\left(V_{T}, V_{N}, P, S\right)$ consists of the following entities:
V_{T}, a set of terminal symbols,
V_{N}, a set of nonterminal symbols,
P, a set of production rules, and
S, a set of starting symbols.
Lets use the notations l (locomotive), v (luggage van), p (passenger coach), 1 (first class coach), d (dining car, interpreted as a special case of a passenger coach) and e (the end of the train, an empty symbol). Now we can draw a syntax diagram for the acceptable train structures:

The BNF (Backus-Naur-Form or Backus normal form) uses the symbols $:=$ as \rightarrow, | for 'or' and $\langle\cdots\rangle$ for nonterminal symbols. The following grammar describes all possible trains:

$$
\begin{aligned}
& V_{T}=\{l, v, p, 1, d, e\} \\
& V_{N}=\{S, A, B, C, D, E\} \\
& P=\left\{\begin{array}{l}
<S>:=l<A> \\
<A>:=v(<A>||<C>|<D>) \\
:=p(|<C>|<E>) \\
<C>:=1(|<C>|<D>|<E>) \\
<D>:=d(<C>|<D>|<E>) \\
<E>:=e
\end{array}\right\}
\end{aligned}
$$

Now the parse tree for the example train $\{l, v, d, 1, p, p\}$ is:

2. Now to check if the grammar accepts a train of the form $\{l, v, v, d, p, 1\}$. From the syntax diagram in the previous question we can instantly see, that the symbol d cannot be followed by p. Thus the grammar does not accept the train.
3. The grammar is

$$
\begin{aligned}
V_{T} & =\{o, a, \neg,+\} \\
V_{N} & =\{\text { Square, Side } 1, \text { Side } 2, \text { Side } 3, \text { Side } 4\} \\
P & =\left\{\begin{array}{l}
\text { Square } \rightarrow \text { Side } 1+\text { Side } 2+\text { Side } 3+\text { Side } 4 \\
\text { Side } 1 \rightarrow o \mid \text { Side } 1+o \\
\text { Side } 2 \rightarrow a \mid \text { Side } 2+a \\
\text { Side } 3 \rightarrow \neg o \mid \text { Side } 3+\neg o \\
\text { Side } 4 \rightarrow \neg a \mid \text { Side } 4+\neg a
\end{array}\right\} \\
S & =\{\text { Square }\} \\
\Rightarrow L & =\left\{\left(o \mid o^{n_{1}}\right)+\left(a \mid a^{n_{2}}\right)+\left(\neg o \mid(\neg o)^{n_{3}}\right)+\left(\neg a \mid(\neg a)^{n_{4}}\right)\right\}
\end{aligned}
$$

Where $n_{1}, n_{2}, n_{3}, n_{4} \geq 1$, \mid stands for 'or' and $a^{n}=a+a+a+\cdots+a(n a$'s).
a) Yes, the grammar produces squares if $n_{1}=n_{2}=n_{3}=n_{4}$.
b) The grammar can produce several other structures, since the only constrained factor is the order of the turns; for example (when $n_{1}=n_{2}=n_{3}=n_{4}$ doesn't hold)

$$
\square \quad \square \quad \begin{array}{llll}
\square & \square & \square
\end{array}
$$

c) The grammar can be made to produce only squares by constraining the length of each vertice to be equal,

$$
L=\left\{o^{n}+a^{n}+(\neg o)^{n}+(\neg a)^{n} \mid n \geq 1\right\}
$$

Thus the grammar is

$$
\begin{aligned}
& V_{T}=\{o, a, \neg,+\} \\
& V_{N}=\{N, A, V, Y\} \\
& P=\left\{\begin{array}{c}
N \rightarrow o+N+A+V+Y \mid o+A+V+Y \\
Y+A \rightarrow A+Y \text { (correct order) } \\
V+A \rightarrow A+V \text { (correct order) } \\
Y+V \rightarrow V+Y \text { (correct order) } \\
o+A \rightarrow o+a \text { (upper right corner) } \\
a+V \rightarrow a+\neg o \text { (lower right corner) } \\
\neg o+Y \rightarrow \neg o+\neg a \text { (lower left corner) } \\
a+A \rightarrow a+a \\
\neg o+V \rightarrow \neg o+\neg o \\
\neg a+Y \rightarrow \neg a+\neg a
\end{array}\right\} \\
& S=\{N\}
\end{aligned}
$$

4. a) The regular EKG-form, as in Syntactic PR, An Introduction, R.C. Gonzales and M.G. Thomason, Addison Wesley 1998, is

Figure 4.12. Normal human ECG.
The deterministic automaton thus becomes

b) With the symbol sequence $p r b t b p r b t b b b \ldots$ the resulting state sequence is

$$
q_{0} \rightarrow q_{A} \rightarrow q_{B} \rightarrow q_{C} \rightarrow q_{D} \rightarrow q_{E} \rightarrow q_{A} \rightarrow q_{B} \rightarrow q_{C} \rightarrow q_{D} \rightarrow q_{E} \rightarrow q_{H} \rightarrow q_{0}
$$

Now when the sequence starts again, the same route is traversed. As alarms are a result of the trap state q_{T}, which is not entered, no alarm is produced with this sequence.

