
T-61.231 Principles of Pattern Recognition
Answers to exercise 7: 11.11.2002

1. The objective is to find the minimum regarding ω for the joint distribution expectation
value,

min
ω

Ex,d

[

(y(x)− d)2
]

.

It helps to recall that Ex,d[· · · ] = Ex[Ed|x[· · · ]] and Ed|x[Ed|x[· · · ]] = Ed|x[· · · ].

Now to the task at hand:

Ex,d

[

(y(x)− d)2
]

= Ex,d

[

((y(x)− Ed|x[d]) + (Ed|x[d]− d))2
]

= Ex,d

[

(y(x)− Ed|x[d])
2 + 2(y(x)− Ed|x[d])(Ed|x[d]− d) + (Ed|x[d]− d)2

]

= Ex

[

Ed|x[(y(x)− Ed|x[d])
2] + 2(Ed|x[y(x)]− Ed|x[d])(Ed|x[d]− Ed|x[d])

+(Ed|x[d]− Ed|x[d])
2
]

= Ex

[

Ed|x[(y(x)− Ed|x[d])
2]
]

So,
min
ω

Ex,d

[

(y(x)− d)2
]

= min
ω

Ex

[

Ed|x[(y(x)− Ed|x[d])
2]
]

.

Since
(

y(x)− Ed|x[d]
)2
≥ 0, the expectation is minimized when

(y(x)− Ed|x[d])
2 = 0⇒ y(x) = Ed|x[d]

and
Ed|x[d] = P (d = 1|x) · 1 + P (d = 0|x) · 0 = P (d = 1|x)

which is the optimal discriminant function for a Bayesian classifier.

2. y = f(o) = f(
∑n

i=1wixi − θ) is the actual output of the perceptron and d is the desired
output.
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The squared error E = (y − d)2 is minimized using the gradient descent method. The
gradient descent method moves the parameter vector w = (w1, w2, . . . , wn, θ)

T to the
opposite direction of the gradient ∇wE = ( ∂E

∂w1
, . . . , ∂E∂θ )

T :

wnew
i = wold

i +∆w = wold
i − η

∂E

∂wi



According to the chain rule
∂E

∂wi
=
∂E

∂y

∂y

∂o

∂o

∂wi
.

Now we have ∂E
∂y = 2(y−d), ∂y

∂o = 1− y2 (since d tanh(x)
dx = 1− tanh(x)2, tanh(x) = ex−e−x

ex+e−x )

and ∂o
∂wi

= xi.

Thus we can write ∆wi = f(y, d)xi, where f(y, d) = −η(y − d)(1− y2).

3. With a hidden layer and an output layer
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ol =
2
∑

k=1

wklxk − θl, yl = f(ol) (hidden layer)

Ol =

2
∑

i=1

Wijyi −Θl, Yi = f(Oj) (output layer)

The back-propagation algorithm updates the parameters by minimizing the squared error
E = ||Y −D||2 using the gradient descent method. Y is the output of the network and D
is the desired output.

E = ||Y −D||2 =
2
∑

j=1

(Yj −Dj)
2 =

2
∑

j=1

(f(Oj)−Dj)
2 =

2
∑

j=1

(f(
2
∑

i=1

Wijyi −Θj)−Dj)
2

Now we have the logsig function f(x) = 1
1+e−x , so

dlogsig(x)
dx = logsig(x)(1− logsig(x)).

For the output neurons, with the chain rule,

∂E

∂Wij
=

∂E

∂Yj

∂Yj

∂Oj

∂Oj

∂Wij

Here ∂E
∂Yj

= 2(Yj − Dj),
∂Yj

∂Oj
= Yj(1 − Yj) (derivative of logsig) and

∂Oj

∂Wij
= yi. Also

∂Oj

∂Θj
= −1. Now let δ

(2)
j = (Yj −Dj)Yj(1− Yj).

Thus
∂E

∂Wij
=2(Yj −Dj)Yj(1− Yj)yi=2δ

(2)
j yi

∂E
∂Θj

=−2(Yj −Dj)Yj(1− Yj)=−2δ
(2)
j

And the update rules become, with the learning parameter η,

W
(t+1)
ij =W

(t)
ij − ηδ

(2)
j (t)yi(t)

Θ
(t+1)
j =Θ

(t)
j + ηδ

(2)
j (t)



And for the hidden layer neurons, again using the chain rule,

∂E
∂wkl

=
∑2

j=1
∂E
∂Yj

∂Yj

∂Oj

∂Oj

∂yl

∂yl

∂ol

∂ol

∂wkl

=
∑2

j=1 2(Yj −Dj)Yj(1− Yj)Wijyl(1− yl)xk
=2yl(1− yl)xk

∑2
j=1(Yj −Dj)Yj(1− Yj)Wij

=2yl(1− yl)xk
∑2

j=1 δ
(2)
j Wij

Now let δ
(1)
l = yl(1− yl)

∑2
j=1 δ

(2)
j Wij . Now

{

∂E
∂wkl

=2δ
(1)
l xk

∂E
∂θl

=−2δ
(1)
l

⇒

{

w
(t+1)
kl =w

(t)
kl − ηδ

(1)
j (t)xk(t)

θ
(t+1)
l =θ

(t)
l + ηδ

(1)
j (t)

4. Let us use the notation of Theodorodis in problems 4 and 5, since the problems originate
from the book. Thus, yk(i) and ŷk(i) denote here the desired and actual outputs of kth
output neuron, respectively.

The cross-entropy function to be optimized is J = −
∑N

i=1

∑kL

k=1 yk(i) ln(
ŷk(i)
yk(i)

) and the

activation function is the sigmoid f(x) = 1
1+exp(−ax) . The gradient δ

L
k (i) can be calculated

from the cost function, and since

J =
k′
∑

k=1

E(i)⇒ E(i) = −yk(i) ln(
ŷk(i)

yk(i)
)

Thus
δLk (i)=

∂E(i)

∂vL
k
(i)

=−∂yk(i) ln(ŷk(i)/yk(i))

∂vL
k
(i)

=−yk(i)
(

∂
∂vL

k
(i)

ln ŷk(i)−
∂

∂vL
k
(i)

ln yk(i)
)

=−yk(i)
∂

∂vL
k
(i)

ln ŷk(i)

=−yk(i)
∂

∂vL
k
(i)

ln( 1

1+e
−avL

k
(i)
)

=−yk(i)
∂

∂vL
k
(i)
{ln 1− ln(1 + e−avL

k
(i))}

=−yk(i)
−ae−avL

k
(i)

1+e
−avL

k
(i)

=−ayk(i)

(

−1 + 1

1+e
−avL

k
(i)

)

=ayk(i)(1− ŷk(i))



5. The cross-entropy function to be optimized is J = −
∑N

i=1

∑kL

k=1 yk(i) ln(
ŷk(i)
yk(i)

). Using the

softmax activation function ŷk(i) =
evL

k

∑L
k′=1 e

vL
k′
, we get

δLk (i)=
∂E(i)

∂vL
k
(i)

=−∂yk(i) ln(ŷk(i)/yk(i))

∂vL
k
(i)

=−yk(i)
(

∂
∂vL

k
(i)

ln ŷk(i)−
∂

∂vL
k
(i)

ln yk(i)
)

=−yk(i)
∂

∂vL
k
(i)

ln ŷk(i)

=−yk(i)
1

ŷk(i)
∂ŷk(i)

∂e
vL
k

∂evL
k

∂vL
k
(i)

=−yk(i)
1

ŷk(i)

(

1
∑

k′ e
vL
k′
+ ev

L
k (−1)(

∑

k′ e
vL

k′ )−2
)

ev
L
k

=−yk(i)
1

ŷk(i)
(ŷk(i)− ŷk(i)

2)

=−yk(i)(1− ŷk(i))
=ŷk(i)yk(i)− yk(i)

Note: the result δLj (u) = ŷj(i) − yj(i) shown in the assignment in the book (Theodorodis

4.7, p. 130 ) would appear to be incorrect and is probably just an error in the book.

6. The behavior of the function can easily be seen, as

µ = µo
1

1 + t
t0

= µo
t0

t0 + t

It is rather obvious, that when t << t0 µ ≈
t0
t0
µ0 = µ0. For example, if t0 = 400 and t = 1,

µ ≈ 0.998µ0.

Also, when t >> t0, µ ≈
t0
t µ0 which is inversely proportional to t.

The behavior in both situations has been illustrated in the figures below.
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