
T-61.231 Principles of Pattern Recognition
Answers to exercise 7: 11.11.2002

1. The objective is to find the minimum regarding ω for the joint distribution expectation
value,

min
ω

Ex,d

[

(y(x)− d)2
]

.

It helps to recall that Ex,d[· · ·] = Ex[Ed|x[· · ·]] and Ed|x[Ed|x[· · ·]] = Ed|x[· · ·].

Now to the task at hand:

Ex,d

[

(y(x)− d)2
]

= Ex,d

[

((y(x)− Ed|x[d]) + (Ed|x[d]− d))2
]

= Ex,d

[

(y(x)− Ed|x[d])
2 + 2(y(x)− Ed|x[d])(Ed|x[d]− d) + (Ed|x[d]− d)2

]

= Ex

[

Ed|x[(y(x)− Ed|x[d])
2] + 2(Ed|x[y(x)]− Ed|x[d])(Ed|x[d]− Ed|x[d])

+(Ed|x[d]− Ed|x[d])
2
]

= Ex

[

Ed|x[(y(x)− Ed|x[d])
2]
]

So,
min
ω

Ex,d

[

(y(x)− d)2
]

= min
ω

Ex

[

Ed|x[(y(x)− Ed|x[d])
2]
]

.

Since
(

y(x)− Ed|x[d]
)2
≥ 0, the expectation is minimized when

(y(x)− Ed|x[d])
2 = 0⇒ y(x) = Ed|x[d]

and
Ed|x[d] = P (d = 1|x) · 1 + P (d = 0|x) · 0 = P (d = 1|x)

which is the optimal discriminant function for a Bayesian classifier.

2. y = f(o) = f(
∑n

i=1wixi − θ) is the actual output of the perceptron and d is the desired
output.

Σ θ

x

1

x
2

n

w

w

w
n

2

1
x

o y
f

The squared error E = (y − d)2 is minimized using the gradient descent method. The
gradient descent method moves the parameter vector w = (w1, w2, . . . , wn, θ)

T to the
opposite direction of the gradient ∇wE = (∂E

∂w1
, . . . , ∂E∂θ)

T :

wnew
i = wold

i +∆w = wold
i − η

∂E

∂wi

According to the chain rule
∂E

∂wi
=
∂E

∂y

∂y

∂o

∂o

∂wi
.

Now we have ∂E
∂y = 2(y−d), ∂y

∂o = 1− y2 (since d tanh(x)
dx = 1− tanh(x)2, tanh(x) = ex−e−x

ex+e−x)

and ∂o
∂wi

= xi.

Thus we can write ∆wi = f(y, d)xi, where f(y, d) = −η(y − d)(1− y2).

3. With a hidden layer and an output layer

w
11

21
W

W
21

f f

f

Y
1

Y
2

o
1

2

1

2

1

x
2

x

−1

w
12

−1

f
o

1
Θ

1

2

O

O
2

1
y

1

Θ
1

ol =
2
∑

k=1

wklxk − θl, yl = f(ol) (hidden layer)

Ol =

2
∑

i=1

Wijyi −Θl, Yi = f(Oj) (output layer)

The back-propagation algorithm updates the parameters by minimizing the squared error
E = ||Y −D||2 using the gradient descent method. Y is the output of the network and D
is the desired output.

E = ||Y −D||2 =
2
∑

j=1

(Yj −Dj)
2 =

2
∑

j=1

(f(Oj)−Dj)
2 =

2
∑

j=1

(f(
2
∑

i=1

Wijyi −Θj)−Dj)
2

Now we have the logsig function f(x) = 1
1+e−x , so

dlogsig(x)
dx = logsig(x)(1− logsig(x)).

For the output neurons, with the chain rule,

∂E

∂Wij
=

∂E

∂Yj

∂Yj

∂Oj

∂Oj

∂Wij

Here ∂E
∂Yj

= 2(Yj − Dj),
∂Yj

∂Oj
= Yj(1 − Yj) (derivative of logsig) and

∂Oj

∂Wij
= yi. Also

∂Oj

∂Θj
= −1. Now let δ

(2)
j = (Yj −Dj)Yj(1− Yj).

Thus
∂E

∂Wij
=2(Yj −Dj)Yj(1− Yj)yi=2δ

(2)
j yi

∂E
∂Θj

=−2(Yj −Dj)Yj(1− Yj)=−2δ
(2)
j

And the update rules become, with the learning parameter η,

W
(t+1)
ij =W

(t)
ij − ηδ

(2)
j (t)yi(t)

Θ
(t+1)
j =Θ

(t)
j + ηδ

(2)
j (t)

And for the hidden layer neurons, again using the chain rule,

∂E
∂wkl

=
∑2

j=1
∂E
∂Yj

∂Yj

∂Oj

∂Oj

∂yl

∂yl

∂ol

∂ol

∂wkl

=
∑2

j=1 2(Yj −Dj)Yj(1− Yj)Wijyl(1− yl)xk
=2yl(1− yl)xk

∑2
j=1(Yj −Dj)Yj(1− Yj)Wij

=2yl(1− yl)xk
∑2

j=1 δ
(2)
j Wij

Now let δ
(1)
l = yl(1− yl)

∑2
j=1 δ

(2)
j Wij . Now

{

∂E
∂wkl

=2δ
(1)
l xk

∂E
∂θl

=−2δ
(1)
l

⇒

{

w
(t+1)
kl =w

(t)
kl − ηδ

(1)
j (t)xk(t)

θ
(t+1)
l =θ

(t)
l + ηδ

(1)
j (t)

4. Let us use the notation of Theodorodis in problems 4 and 5, since the problems originate
from the book. Thus, yk(i) and ŷk(i) denote here the desired and actual outputs of kth
output neuron, respectively.

The cross-entropy function to be optimized is J = −
∑N

i=1

∑kL

k=1 yk(i) ln(
ŷk(i)
yk(i)

) and the

activation function is the sigmoid f(x) = 1
1+exp(−ax) . The gradient δ

L
k (i) can be calculated

from the cost function, and since

J =
k′
∑

k=1

E(i)⇒ E(i) = −yk(i) ln(
ŷk(i)

yk(i)
)

Thus
δLk (i)=

∂E(i)

∂vL
k
(i)

=−∂yk(i) ln(ŷk(i)/yk(i))

∂vL
k
(i)

=−yk(i)
(

∂
∂vL

k
(i)

ln ŷk(i)−
∂

∂vL
k
(i)

ln yk(i)
)

=−yk(i)
∂

∂vL
k
(i)

ln ŷk(i)

=−yk(i)
∂

∂vL
k
(i)

ln(1

1+e
−avL

k
(i)
)

=−yk(i)
∂

∂vL
k
(i)
{ln 1− ln(1 + e−avL

k
(i))}

=−yk(i)
−ae−avL

k
(i)

1+e
−avL

k
(i)

=−ayk(i)

(

−1 + 1

1+e
−avL

k
(i)

)

=ayk(i)(1− ŷk(i))

5. The cross-entropy function to be optimized is J = −
∑N

i=1

∑kL

k=1 yk(i) ln(
ŷk(i)
yk(i)

). Using the

softmax activation function ŷk(i) =
evL

k

∑L
k′=1 e

vL
k′
, we get

δLk (i)=
∂E(i)

∂vL
k
(i)

=−∂yk(i) ln(ŷk(i)/yk(i))

∂vL
k
(i)

=−yk(i)
(

∂
∂vL

k
(i)

ln ŷk(i)−
∂

∂vL
k
(i)

ln yk(i)
)

=−yk(i)
∂

∂vL
k
(i)

ln ŷk(i)

=−yk(i)
1

ŷk(i)
∂ŷk(i)

∂e
vL
k

∂evL
k

∂vL
k
(i)

=−yk(i)
1

ŷk(i)

(

1
∑

k′ e
vL
k′
+ ev

L
k (−1)(

∑

k′ e
vL

k′)−2
)

ev
L
k

=−yk(i)
1

ŷk(i)
(ŷk(i)− ŷk(i)

2)

=−yk(i)(1− ŷk(i))
=ŷk(i)yk(i)− yk(i)

Note: the result δLj (u) = ŷj(i) − yj(i) shown in the assignment in the book (Theodorodis

4.7, p. 130) would appear to be incorrect and is probably just an error in the book.

6. The behavior of the function can easily be seen, as

µ = µo
1

1 + t
t0

= µo
t0

t0 + t

It is rather obvious, that when t << t0 µ ≈
t0
t0
µ0 = µ0. For example, if t0 = 400 and t = 1,

µ ≈ 0.998µ0.

Also, when t >> t0, µ ≈
t0
t µ0 which is inversely proportional to t.

The behavior in both situations has been illustrated in the figures below.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

mu
0
 = 1, t = 0,...,10, t

0
 = 400

1 1.5 2 2.5 3 3.5 4

x 104

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

mu
0
 = 1, t = 10000,..,40000, t

0
 = 400

t << t0 t >> t0

