T-61.231 Principles of Pattern Recognition
Answers to exercise 7: 11.11.2002

1. The objective is to find the minimum regarding w for the joint distribution expectation
value,

min B,.q [(y(z) - d)°] -
It helps to recall that E, 4[---] = Ex[Eq,[ - -]] and Eg[Egel- -] = Eq[- -+ |-
Now to the task at hand:
Epa [(y(z) = d)*] = Eva [((y(2) — Bage[d)) + (Egzld] — d))?]
= Eva [(y(2) = Bae[d])® + 2(y(z) — Egold))(Bqgeld] — d) + (Eqeld] — d)?]
= E; [Bge[(y(2) — Eaie[d))?] + 2(Egpe[y(2)] = Eaie[d) (Eqeld] — Eqpe[d))
+(Eqj[d] — Egpz[d])?]

= E, [Eq[(y(x) — Eg,[d))?]

So,
H}Uin E%d [(y(m) — d)Q] = mgin E, [Ed\a:[(y(x) - Ed|m[d])2]] :

Since (y(z) — Ed‘x[d])2 > 0, the expectation is minimized when
(y(2) = Egeld))* = 0 = y(z) = Egp,[d)

and
Ed‘m[d] =P(d=1)z)- 1+ P(d=0|z)-0=P(d = 1|x)

which is the optimal discriminant function for a Bayesian classifier.

2. y = f(o) = f(O1, wiw; — 0) is the actual output of the perceptron and d is the desired

output.
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The squared error E = (y — d)? is minimized using the gradient descent method. The

gradient descent method moves the parameter vector w = (wi,wy,... ,wn,G)T to the
opposite direction of the gradient V,FE = (g—fl, ce %—g)T:

op

Wi = w4+ Aw = wd'® — 1)
awi

)



According to the chain rule
OFE  OFE 0y 0o

8’(01' N 8—y%8wl '

Now we have aE 20y —d), & =1—y? (since dta;il(w) = 1 —tanh(z)?, tanh(x) = Zi;g:i)
and 88—1; =x;.
Thus we can write Aw; = f(y, d)z;, where f(y,d) = —n(y — d)(1 — y?).

3. With a hidden layer and an output layer

2
= Z wixy, — 0y, yr = f(o;) (hidden layer)

2
O = Z Wijyi — ©1, Yi = f(O;) (output layer)
i1

The back-propagation algorithm updates the parameters by minimizing the squared error
E = ||Y — D||? using the gradient descent method. Y is the output of the network and D
is the desired output.

2 2 2
E=|Y-DI?=> (Y;—D;)” =Y (f(0)) = D;)> = _(fO_ Wiyi — ©;) — D;)?
j=1 j=1 j=1 =1

Now we have the logsig function f(z) = 1+i*r= S0 dlogj;g(x) = logsig(x)(1 — logsig(x)).
For the output neurons, with the chain rule,

o8 _ ox 0, 00,

oW 0Y; 00; OWy;
Here 2 BT = 2(Y; — Dj), J = Y;(1 —Y;) (derivative of logsig) and 61/(\‘)/ = y;. Also
00
Jo- = —1. Now let 5} = (Y D;)Y;(1-Y;).
Thus

- =2(Y; = Dj)Y;(1 = Y))yi=26,"y,

ggj ——2(Y; — D,)Y;(1 - Y)_—26(2)

And the update rules become, with the learning parameter 7,

W?*” =W = 0,2 (1)1
1 2
t+1) @gt) + (5]( )( £)



And for the hidden layer neurons, again using the chain rule,

OF 2 OFE 0Y; 00; dy; do;

8wkl J 1 0Y; BO ayl do; Owyy
_E] 1 (Y D; )Y( - Y)Wz]@/l(l — Y1) Tk
=2y(1 — y1)zy, ZJ (Y5 = Dj)Y;(1 = Y)W
_2yl(1 - yl)xk Z] 1 (5J( )Wz]

Now let 51(1) =y(1—y) X2 5(2)W Now

J=17j
0B _g951),. t+1
=20 e [ =i = (,’ 0
2%~ —25() 6 =g + i)

. Let us use the notation of Theodorodis in problems 4 and 5, since the problems originate
from the book. Thus, yx(i) and Jx(i) denote here the desired and actual outputs of kth
output neuron, respectively.

The cross-entropy function to be optimized is J = — SV S 4, (4 )ln(y’“&) and the
activation function is the sigmoid f(z) = m The gradient 67 (i) can be calculated

from the cost function, and since

k(1)
J = 40 = — In
Z Yr(7) (yk(z))
Thus e
5L( ) BUL(Zi)
—_ Oyk (1) In(g (1) /yx (9))
vy (1)
=—u(0) (% Ty 09k (0) — %lnyk(i))
__yk(Z) 8UL(1) In yk( )
(i)l In(—L )
Vi (Z) 1+e k( ) ,
:—yk(l) 9 g {ln 1-— ln(l + e~k (z))}
. 7(167‘“}[/(1)
:_yk(z) 7avl;‘(7l)
1+e k

=ayy(1)(1 — k(7))



5. The cross-entropy function to be optimized is J = — Zfil E:il Yk (1) ln(y’“(i) ). Using the

. i (4)
softmax activation function g (i) = Levk —, we get
w=1€F
L/_ O
5k (Z)_ 81;[’(2@)
Oy (8) In (1 (1) /yx (7))

Note: the result 5]L(u) = 7;(i) — y;(i) shown in the assignment in the book (Theodorodis
4.7, p. 130) would appear to be incorrect and is probably just an error in the book.

. The behavior of the function can easily be seen, as

1t
1+%_M°to+t

= Mo

It is rather obvious, that when t << tg p =~ i—g,uo = po. For example, if tg = 400 and ¢t = 1,
w o~ 0.9981.

Also, when t >> tg, u ~ %0 o which is inversely proportional to ¢.

The behavior in both situations has been illustrated in the figures below.

muy =1, t=0,..,10,1) = 400 mu, = 1, t= 10000,..,40000, t, = 400
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