
T-61.231 Principles of Pattern Recognition
Answers to exercise 6: 4.11.2002

1. The SVM optimal hyperplane separates the space so that

ωTxi + ω0 ≥ +1, if xi ∈ ω1

ωTxi + ω0 < −1, if xi ∈ ω2

Let ω1 be on the positive side of the optimal hyperplane and ω2 on the negative side, and
d+ and d− be the distances from the optimal hyperplane and the nearest point in classes
ω1 and ω2, respectively. Let g(x) = ωTxi+ω0 be the distance from the optimal hyperplane
ω. It can also be stated that

x = xp + r
ω

||ω||

where xp is the projection of x onto the optimal hyperplane and r is the distance from the
hyperplane. Since g(xp) = 0 by definition (the point xp lies on the optimal hyperplane),

g(x) = ωTx+ ω0 = r||w|| ⇔ r =
g(x)

||ω||

Thus the algebraic distance for the support vectors is

r =
g(x)

||ω||
=

{

1

||ω|| = d+, when x is the nearest point of ω1

− 1

||ω|| = d−, when x is the nearest point of ω2

Here the negative sign denotes being on the negative side of the hyperplane. Thus the
margin between the two classes is 2

||ω|| .

2. The main idea behind finding the optimal SVM decision hyperplane is to maximize the
marginal 2

||ω|| . In the basic, separable case this is done through taking positive (because

of the form . . . ≥ 0) Lagrange multipliers αi, i = 1, . . . , l, where l is the number of points,
for each inequity

yi(ω
Txi + ω0)− 1 ≥ 0

where yi denotes class membership, yi = 1 if xi ∈ ω1 and yi = −1 if xi ∈ ω2. Thus the
objective function to minimize is

LP =
||ω||2

2
−

l
∑

i=1

αiyi(ω
Txi + ω0) +

l
∑

i=1

αi

The objective is to minimize LP with respect to ω and ω0 and simultaneously require that
the derivatives of LP with respect to all αi vanish, all subject to the constraints αi ≥ 0.
This is a convex quadratic programming problem, since both the objective function is
convex and the points satisfying the constraints form a convex set. This means that it is
equivalently possible to solve the dual problem, maximize LP subject to the constraints
that the gradient of LP with respect to ω and ω0 vanish and again all αi ≥ 0. Requiring
the gradient of LP to vanish with respect to ω and ω0 gives the additional constraints:

δLP

δω
= ω −

∑

i

αiyixi = 0⇒ ω =
∑

i

αiyixi

δLP

δω0

= −
∑

i

αiyi = 0⇒
∑

i

αiyi = 0

By substituting these conditions into the equation for LP we obtain

LD = 1

2
(
∑

i αiyixi)
2 +−(

∑

i αiyixi)
2 − 0 ∗ w0 +

∑

i αi

=
∑l

i=1
αi −

1

2

∑

i,j αiαjyiyjxi · xj

Both formulations produce the same result. The latter formulation is called the Wolfe
dual.

For the non-separable case the basic algorithm provides no feasible solution as the objective
function grows arbitrarily large. In order to handle the non-separable case an additional
cost must be introduced to loosen the original constraints when necessary. This can be
done by introducing positive slack variables ξi ≥ 0, i = 1, . . . , l into the constraints, which
then become

ωTxi + ω0 ≥ 1− ξi, if x ∈ ω1

ωTxi + ω0 ≤ −1 + ξi, if x ∈ ω2

Thus for an error to occur ξi > 1, so
∑

i ξi is an upper bound for training errors. The

costs can be added to the objective function so that the objective function becomes ||ω||
2

2
+

C(
∑

i ξi)
k, where C is a cost parameter to be freely chosen (larger C is equivalent to a

larger cost for making a mistake). It can be seen that when k = 1 LP becomes

LP =
||w||2

2
+ C

∑

i

ξi −
∑

i

αi[yi(xi · ω + ω0)− 1 + ξi]−
∑

i

µiξi

In this case neither ξi nor their Lagrange multipliers µi appear in the Wolfe dual LD, which
can be seen by requiring the gradient of LP to vanish with respect to ω, ω0 and all ξi:

δLP

δω
= ω −

∑

i

αiyixi = 0

δLP

δω0

= −
∑

i

αiyi = 0

δLP

δξi
= C − αi − µi = 0

By substituting these into the equation for LP we get the Wolfe dual for the non-separable
case

LD = 1

2
(
∑

i αiyixi)
2 +

∑

i(αi + µi)ξi − (
∑

i αiyixi)
2 − 0 ∗ b+

∑

i αi −
∑

i αiξi −
∑

i µiξi

= −1

2
(
∑

i αiyixi)
2 +

∑

i αi

=
∑

i αi −
1

2

∑

i,j αiαjyiyjxi · xj

So the problem is to maximize LD subject to the constraints 0 ≤ αi ≤ C and
∑

i αiyi = 0,

and w =
∑Ns

i=1
αiyixi, where Ns is the amount of support vectors. As we can see, the

form of LD is actually identical to that of the separable case. The only difference is in the
constraints.

So, in the situation where we have the points x1 = [1 1]T ∈ ω1, x2 = [2 1]T ∈ ω2,
x3 = [3 2]T ∈ ω1 and x4 = [2 3]T ∈ ω2, the dual problem LD can be written as

LD =
∑

i αi −
1

2

∑

i,j αiαjyiyjxi · xj

= α1 + α2 + α3 + α4 −
1

2
(2α2

1 + 5α2
2 + 13α2

3 + 13α2
4 − 6α1α2 + 10α1α3

−10α1α4 − 16α2α3 + 14α2α4− 24α3α4)

and the constraints as

α1 − α2 + α3 − α4 = 0

0 ≤ αi ≤ C ∀i

where C is the cost parameter to be chosen.

3. a) The total amount of weights is the same as the total amount of connections, including
the biases. So with the network containingNx input neurons, Nh hidden layer neurons
and Ny output neurons and being fully connected, as is shown in the figure, the total
amount of weights is

... ...
−1−1

... ...

−1

Nw = (Nx + 1)Nh + (Nh + 1)Ny = Nh(Nx +Ny + 1) +Ny

b) Ny = 10 means that the number of character classes is ten and one output neuron has
been assigned to each class, and the output of the network can be seen as a posteriori
distribution of the classes. Thus the result is the class whose neuron shows the most
activation.

A logical number of input neurons for a 16× 16 is Nx = 16 ∗ 16 = 256.

Widrow rule is written as

Nt ≥ 10
Nw

Ny

In this case, since Ny = 10, this simplifies to Nt = Nw. The ratio at the limit can be
explored from two directions,

1. Nt = Nw = Nh(Nx +Ny + 1) +Ny ⇒
Nh

Nt
= 1−10/Nt

267

or

2. Nh

Nt
= Nh

Nw
⇒ Nh

Nt
= 1

267+10/Nh

So if Nh >> 1 or Nt >> 1 the limit approaches 1

267
.

It should be noted that Widrows rule provides some kind of an estimate to the suitable
network size; there is no proven analytic way of knowing the “right” network size for
a given problem. But this estimate gives a reasonable value to start with.

4. A single perceptron can divide the feature space into two different parts based on which
side of the decision line the point resides. Thus, two perceptrons can divide the feature
space into four parts. So lets draw two decision lines into the figure as shown.

From the figure it can be estimated that for example the functions

x2 =2.5x1 − 2.5
x2 =−x1 + 4

i.e.
−2.5x1 + x2 + 2.5=0

−x1 − x2 + 4=0

could separate the areas.

Now, all the samples of class 2 are in the area C = ¬A ∩B and all the samples of class 1
are in D = ¬(¬A ∩ B), with A lying above the first line and B below the second one as
indicated with the short marks in the image.

A B C D

0 0 0 1
0 1 1 0
1 0 0 1
1 1 0 1

Thus the network weights would be

A

B

C

D

x
1

2
x

−1 −1

−4

−2.5

−2.5

1

−2
3

2
3

−1
−1

−1

−2

5. First, lets draw the lines together and mark which side of the line the equation gives
positive values on. Then we go through each sector of the space separated by these lines
and give them a binary code indicating which side of each of the lines it is on, for example
001 is on the negative side of g1 and g2 but on the positive side of g3, the ith bit being one
if the area resided on the positive side of gi and zero if it resides on the negative side.

g : x = 1/422

g : x − x = 01 23

g : x + x = 0
1 1 2

100

111

101

001

000

010
110

+

−

+
−

+
−

Now we can also see that no section received the value 011, this is perfectly normal. 011
is called a virtual polyhedra, which are quite common when dividing the two-dimensional
space with multiple lines that do not all intersect at the same position.

Now, each of the areas is mapped onto the vertice of a three-dimensional cube.

000 100

101

111011

010

001

a) For the regions to be possible to classify with a two-layer network, it is necessary that
the vertices of the cube that we want to join are linearly separable (in the cube
projection). Thus we can choose for example the vertices 000, 100, 101 and 110. We
can insert a plane of, for example, the form y1 − y2 − y3 + 1/2 = 0, with the positive
side being in the direction of 100, to separate these, as is illustrated in the image.

000 100

101

111011

010

001

Thus we obtain the second-layer weight vector to be ω21 = [1 − 1 − 1;−1/2]T .

b) A three-layer network can separate any union of Nh vertices, where Nh is the amount
of hidden-layer neurons. Thus it is possible to separate for example the vertices 000,
100, 101, 110, 010 and 011. (Or looking at it the other way around, the remaining
vertices of 001 and 111, which just happens to be the same number as the intended
amount of hidden layer neurons). This can be accomplished for example by using the
plane −y1 + y2 − 1/2 = 0, the positive side is in the direction of 010 and 011.

000 100

101

111011

010

001

Now we obtain the second second-layer weight vector of ω22 = [−1 1 0; 1/2]T .

Further, we must now combine these hidden layer outputs. This can again be visu-
alized by plotting the possible outputs 10, 00 and 01 onto a two-dimensional space
and extracting a line to separate them. (Note again, that the situation 11 is now
impossible; this is clear by looking at the planes and the cube vertices.)

10

01

00

Now these can be separated with for example the line z1 + z2 + 1/2 = 0, resulting in
the final weight vector of ω3 = [1 1 − 1/2]T .

