
T-61.231 Principles of Pattern Recognition
Answers to exercise 5: 21.10.2002

1. A Gaussian distribution has two parameters: a mean vector µ and covariance matrix Σ.

µ̂i = mi and Σ̂ = 1

ni−1

∑

ni

k=1
(xk − µ̂i)(xk − µ̂i)

T

a) Lets assume that there are approximately as many samples from both classes (n1 ≈ n2).
Now we can draw both distributions in the same picture and use the same scale for
both of them.

The density of class 1 is symmetric as the diagonal elements of S1 are equal. As for
class 2, the density is expanded in the direction of the “width” of the distribution on
the x1-axis depends on α.
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b) ŵ = S−1

W
(m1 −m2)

SW = S1 + S2 =

[

1 + α 0
0 2

]

⇒ S−1

W
=

1

2(1 + α)

[

2 0
0 1 + α

]

=

[

1

1+α
0

0 1

2

]

ŵ =

[

1

1+α
0

0 1

2

] [

(−2− 2)
(−2− 2)

]

= −2

[

2

1+α

1

]

c) To determine the eigenvectors of S−1

W
SB we first calculate the between-class scatter

matrix SB from SB = (m1 −m2)(m1 −m2)
T .

SB =

[

(−2− 2)
(−2− 2)

]

[

(−2− 2) (−2− 2)
]

=

[

16 16
16 16

]

Now

S−1

W
SB =

[

1

1+α
0

0 1

2

] [

16 16
16 16

]

=

[

16

1+α

16

1+α

8 8

]

The eigenvectors for matrix A are defined as Ax = λx⇒ (A−λI)x = 0. A nontrivial
solution exists, if det(A− λI) = 0

∣

∣

∣
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16

1+α
− λ 16

1+α

8 8− λ

∣

∣

∣

∣

= 0⇔ (
16

1 + α
−λ)(8−λ)− 8

16

1 + α
= 0⇔ λ2− (8+

16

1 + α
)λ = 0

Thus the eigenvalues are λ1 = 0 and λ2 = 8 + 16

1+α
(Note that α = σ2

1 > 0).



The eigenvector corresponding to the larger eigenvalue: Ae = λ2e, where e = [e1 e2]
T .

Thus
[

16

1+α

16

1+α

8 8

] [

e1
e2

]

= (8 +
16

1 + α
)

[

e1
e2

]

Calculating from the lower row (the same result can be obtained from the upper row,
too)

8e1 + 8e2 = (8 +
16

1 + α
)e2 ⇔ e1 =

2

1 + α
e2 ⇒ e =

[

2

1+α

1

]

As can be seen, both methods produced a vector of the same orientation, as was to
be expected.

d) The Fisher linear discriminant is thus ŵ =

[

2

1+α

1

]

, m1 = ( −2 −2 )T , m2 =

( 2 2 )T ,

S1 =

[

1 0
0 1

]

and S2 =

[

α 0
0 1

]

.

α = 1⇒ ŵ =

[

1
1

]

and S2 =

[

1 0
0 1

]

: α = 4⇒ ŵ =

[

2/5
1

]

and S2 =

[

4 0
0 1

]

:

x1

x2

x1

x2

α→∞⇒ ŵ →

[

0
1

]

and S2 →

[

∞ 0
0 1

]

: α→ 0⇒ ŵ →

[

2
1

]

and S2 →

[

0 0
0 1

]

:

x1

x2

x1

x2

The discriminants seem quite valid, as it can be seen that by projecting the distribu-
tions onto the discriminant in all cases the distributions become well separable.



2. Fisher’s linear discriminant is based on projecting the original data onto a line in the
direction of ω (‖ω‖ = 1) so that the criterion function

J(ω) =
(m1 −m2)

2

σ̂2
1
+ σ̂2

2

,

where mi and σ̂2
i
are the projected mean and within-class scatter of the projected data

for class i, is maximized. In this exercise, we consider an alternative criterion function
J ′(ω) = (m1 −m2)

2 consisting of only the nominator of J(ω).

J ′(ω) = (m1 −m2)
2 = (ωTm1 − ωTm2)

2 =
[

ωT (m1 −m2)
]2

This is clearly maximized as ω || (m1−m2) ie. when Fisher’s discriminant is parallel to the
line fixed by the sample means m1 and m2.

3. Let us denote the function slightly differently for the proof; let l = d − 1 and O(N, l) =
C(N, d), where

C(N, d) = 2

d−1
∑

k=0

(

N − 1

k

)

.

In my opinion this is more illustrative, as we are actually using the dimension of the space
d instead of constantly using l to denote l − 1 dimensional space. C(N, d) tells us the
number of groupings that can be formed by d-dimensional hyperplanes to separate the N
points into two classes.

First we need to prove that C(N + 1, d) = C(N, d) + C(N, d− 1).

Let C(N, d) be a separable set of dichotomies X. Let’s take a new point xN+1 so that
X∪{xN+1} is in the general position (well distributed). Let there be a vector w that divides
X into two sets X = {X+, X−} so that w · x > t ⇒ x ∈ X+ and w · x < t ⇒ x ∈ X−,
where t is a scalar.

If {X+, X−} is separable, must also either {X+ ∪ {xN+1}, X
−} or {X+, X− ∪ {xN+1}}

be separable. However, they both are separable if and only if ∃w that is a vector that
separates {X+, X−} in a (d− 1) dimensional space and is orthogonal to xN+1

To prove the prior statement regarding w, let the set of separating vectors W = {w :
w · x > t, x ∈ X+;w · x < t, x ∈ X−}. The set {X+ ∪ {xN+1}, X

−} is homogeneously
separable if and only if ∃w ∈W so that w ·xN+1 > t, and equivalently {X+, X−∪{xN+1}}
is homogeneously separable if and only if ∃w ∈ W so that w · xN+1 < t Let the sets be
linearly separable with w1 and w2, respectively. Then w

∗ = (−w2 ·xN+1)w1+(w1 ·xN+1)w2

separates {X+, X−} by the hyperplane {x : w∗ ·x = t} passing through xN+1. Conversely,
if the sets {X+, X−} are homogeneously linearly separable by a hyperplane containing
xN+1, then ∃w

∗ ∈W so that w∗ ·x = t. SinceW is an open set, ∃ε > 0 so that w∗+εxN+1

and w ∗ −εxN+1 are in W . Hence {X+ ∪ {xN+1}, X
−} and {X+, X− ∪ {xN+1}} are

homogeneously linearly separable by w ∗+εxN+1 and w ∗ −εxN+1, respectively.

So the set can be separated if and only if ∃w so that the projection onto a (d−1) dimensional
subspace is separable. By the induction hypothesis there are C(N, d − 1) such separable
dichotomies. Hence,

C(N + 1, d) = C(N, d) + C(N, d− 1)

By repeatedly applying of this to the terms on the right we obtain

C(N, d) =

N−1
∑

k=0

(

N − 1

k

)

C(1, d− k)



Now, as it is obvious that one point can be separated in two ways if the dimension is
greater or equal to 1 and no separation can be made when the dimension is below one, or

C(1,m) =

{

2,m ≥ 1

0,m < 1

The original theorem follows by separating the part of the sum where d−k < 1⇔ k > d−1:

C(N, d) = 2
d−1
∑

k=0

(

N − 1

k

)

+0 ·
N−1
∑

k=d

(

N − 1

k

)

= 2
d−1
∑

k=0

(

N − 1

k

)

⇔ O(n, l) = 2
l

∑

k=0

(

N − 1

k

)


