
T-61.231 Principles of Pattern Recognition
Answers to exercise 4: 14.10.2002

1. A 1-NN Classifier is created by using a training set Hn = {x1, . . . , xn} and it is tested with
the vector x. x belongs to the class ω and its nearest neighbor x′ belongs to class θ. The
error probability for x is (Schalkoff page 79):

e1NNR(x, x
′) = P (ω 6= θ|x, x′) =

∑

i
P (ω = ωi|x)P (θ 6= ωi|x

′)

Now x = x′ as the training set is also used as a test set.

⇒ ∀iP (θ 6= ωi|x
′) = 0, if ω = ωi ⇒ e1NNR = 0

This is obviously an useless estimate for the recognition performance.

2. ωTx− ω0

{

> 0, ∀x ∈ H1

< 0, ∀x ∈ H2

.

a) ω′Tx− ω0 =
[

ω′ ω0

]

[

x

−1

]

= ωT x̂

If x̂ ∈ H1 ⇒ ωT x̂ > 0. If x̂ ∈ H2 ⇒ ωT x̂ < 0 ⇒ ωT (−1)x̂ > 0. So if the sign of x̂ is
changed when x̂ ∈ H2, it holds that ω

T x̂ > 0 ∀x̂.

b) This is illustrated in the figure below, where the arrows represent the augmentation
and dashed arrow the change in sign. After the augmentation and sign change all the
samples are on the same side of the line.

3. ω(n)T x̂i < 0 means that x̂i was not correctly classified in the nth iteration round.

In order to have x̂i correctly classified in the next iteration, ω(n) must be updated so that

ω(n+1)T x̂i > 0

The updating rule is ω(n+1) = ω(n) + αx̂i

⇒ ω(n+1)T x̂i = (ω(n) + αx̂i)
T x̂i = ω(n)T x̂i + αn||x̂i||

2 > 0 ⇔ αn >
−ω(n)T x̂i

||x̂i||
2



4. Let’s augment the vectors and choose to change the sign of the samples belonging to H2.

Thus the sample vectors are x1 =

[

−2
−1

]

∈ H1 and x2 =

[

1
1

]

∈ H2, x3 =

[

−2
1

]

∈ H2.

The initial weight vector is ω0 =

[

1
1

]

∈ H1 and α = 0.5.

The iteration will proceed as follows: (Note that the update is made even when ωTx = 0,
even though this is not really indicated by the rule. I think that it is better to update
them too often as this should only improve convergence, and as the original decision rule is
based on < 0 or > 0 the situation ωTx = 0 is “indecisive”. Although, in real-life situations
the values would probably never be so precise as for 0 to be the result and this slight
dilemma would never be seen.)

Sample ωTx New ωT

1 −2− 1 = −3 < 0 [(1− 1) (1− 0.5)] = [0 0.5]
2 0 + 0.5 = 0.5 > 0 no change
3 0 + 0.5 = 0.5 > 0 no change
1 0− 0.5 = −0.5 < 0 [(0− 1) (0.5− 0.5)] = [−1 0]
2 −1 + 0 = −1 < 0 [(−1 + 0.5) (0 + 0.5)] = [−0.5 0.5]
3 1 + 0.5 = 1.5 > 0 no change
1 1− 0.5 = 0.5 > 0 no change
2 −0.5 + 0.5 = 0 [(−0.5 + 0.5) (0.5 + 0.5)] = [0 1]
3 0 + 1 = 1 > 0 no change
1 0− 1 = −1 < 0 [(0− 1) (1− 0.5)] = [−1 0.5]
2 −1 + 0.5 = −0.5 < 0 [(−1 + 0.5) (0.5 + 0.5)] = [−0.5 1]
3 1 + 1 = 2 > 0 no change
1 1− 1 = 0 [(−0.5− 1) (1− 0.5)] = [−1.5 0.5]
2 −1.5 + 0.5 = −1 < 0 [(−1.5 + 0.5) (0.5 + 0.5)] = [−1 1]
3 2 + 1 = 3 > 0 no change
1 2− 1 = 1 > 0 no change
2 −1 + 1 = 0 [(−1 + 0.5) (1 + 0.5)] = [0.5 1.5]
3 −1 + 1.5 = 0.5 > 0 no change
1 1− 1.5 = −0.5 < 0 [(−0.5− 1) (1.5− 0.5)] = [−1.5 1]
2 −1.5 + 1 = 0.5 < 0 [(−1.5 + 0.5) (1.5 + 0.5)] = [−1 1.5]
3 2 + 1.5 = 2.5 > 0 no change
1 2− 1.5 = 0.5 > 0 no change
2 −1 + 1.5 = 0.5 > 0 no change



So the algorithm converged at a weight vector of ω = [−1 1.5]T = [ω′ ω0], which is
illustrated in the figure below.

The correctness of the result can also be verified by calculating with the original values:

x1 = −2 ⇒ ω′x− ω0 = −1 ∗ −2− 1.5 = 0.5 > 0
x2 = −1 ⇒ ω′x− ω0 = −1 ∗ −1− 1.5 = −0.5 < 0
x3 = 2 ⇒ ω′x− ω0 = −1 ∗ 2− 1.5 = −3.5 < 0


