T-61.231 Principles of Pattern Recognition

Answers to exercise 3: 7.10.2002

1. Parzen window $\Theta(x)=\Theta\left(\frac{\bar{x}-\overline{x^{i}}}{h_{n}}\right)=\left\{\begin{array}{l}1, \text { if } \bar{x} \text { is in hypercube center } \overline{x^{i}}, \text { side length } h_{n} \\ 0, \text { otherwise }\end{array}\right.$ $k_{n}=\sum_{i=1}^{n} \Theta\left(\frac{\bar{x}-\overline{x^{i}}}{h_{n}}\right)$ is the number of samples in the hypercube and n the total number of samples.
$p_{n}(\bar{x})=\frac{k_{n} / n}{V_{n}}=\frac{1}{n V_{n}} \sum_{i=1}^{n} \Theta\left(\frac{\bar{x}-\overline{x^{i}}}{h_{n}}\right)$, where V_{n} is the volume of the hypercube.
Now $\overline{x^{i}}=y^{(i)}, h_{n}=1, V_{n}=1$ and $n=9$. Thus

2. Point X is classified according to it's 5 nearest neighbors. The distance metric used is the Euclidean distance and the decision rule the voting result of the 5 nearest neighbors.

Point	Votes for O	Votes for X	Resulting class
A	3	2	O
B	2	3	X
C	3	2	O

3. a) $y^{(i)}=\left[y_{1}^{(i)} y_{2}^{(i)}\right]^{T}, s^{(j)}=\left[s_{1}^{(j)} s_{2}^{(j)}\right]^{T}$. A point $\hat{y}=\left[\begin{array}{ll}y_{1} & y_{2}\end{array}\right]^{T}$ is on the decision boundary, if

$$
\begin{aligned}
d\left(\hat{y}, y^{(i)}\right) & =d\left(\hat{y}, s^{(j)}\right) \\
\sqrt{\left(\hat{y}_{1}-y_{1}^{(i)}\right)^{2}+\left(\hat{y}_{2}-y_{2}^{(i)}\right)^{2}} & =\sqrt{\left(\hat{y}_{1}-s_{1}^{(j)}\right)^{2}+\left(\hat{y}_{2}-s_{2}^{(j)}\right)^{2}}
\end{aligned}
$$

$$
\Leftrightarrow \hat{y}_{1} 2\left(s_{1}^{(j)}-y_{1}^{(i)}\right)+\hat{y}_{2} 2\left(s_{2}^{(j)}-y_{2}^{(i)}\right)+\left(y_{1}^{(i)}\right)^{2}-\left(s_{1}^{(j)}\right)^{2}+\left(y_{2}^{(i)}\right)^{2}-\left(s_{2}^{(j)}\right)^{2}=0
$$

$$
\text { and by setting } a=2\left(s_{1}^{(j)}-y_{1}^{(i)}\right), b=2\left(s_{2}^{(j)}-y_{2}^{(i)}\right) \text { and } c=\left(y_{1}^{(i)}\right)^{2}-\left(s_{1}^{(j)}\right)^{2}+\left(y_{2}^{(i)}\right)^{2}-\left(s_{2}^{(j)}\right)^{2}
$$ it is clear that the resulting equation $a \hat{y}_{1}+b \hat{y}_{2}+c=0$ represents a line.

By taking the points from the figure,

$$
\left\{\begin{array} { l }
{ s _ { 1 } ^ { (j) } = 3 . 6 } \\
{ s _ { 2 } ^ { (j) } = 9 . 5 } \\
{ y _ { 1 } ^ { (i) } = 3 . 0 } \\
{ y _ { 2 } ^ { (i) } = 9 . 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
a=1.2 \\
b=1.0 \\
c=-13.12
\end{array} \Rightarrow \hat{y}_{2}=-1.2 \hat{y}_{1}+13.12\right.\right.
$$

b)

c)

