
T-61.231 Principles of Pattern Recognition
Answers to exercise 2: 30.9.2002

1. a) Misclassification events are defined as follows:
ε1 = P (x ∈ ω1, but is classified into class ω2)
ε2 = P (x ∈ ω2, but is classified into class ω1)

These probabilities are obtained by integration;
ε1 =

∫

R2 p(x|ω1)dx =
∫∞
1 0.5e−|x| = 0.5e−1

ε2 =
∫

R1 p(x|ω2)dx =
∫ 1
−∞ e−2|x−2| =

∫ 1
−∞ 0.5e

2x−4 = 0.5e−2
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Exercise 2−1

b) Let r be the decision boundary. From the figure it can be seen that when r < 0⇒ ε1 >
1
2 > ε2 and when r > 2⇒ ε1 <

1
2 < ε2 Therefore r ∈ [0, 2] if ε1 = ε2

ε1 = ε2 ⇔
∫∞
r p(x|ω1)dx =

∫ r
−∞ p(x|ω2)dx ⇔ 0.5e−r = 0.5e2r−4 ⇔ r = 4

3

2. λij is the cost of choosing class ωj if the correct class is ωi. The risks of both decisions are
defined as
R(Class ω1 is chosen) = λ11p(ω1|x) + λ21p(ω2|x) = R(ω1|x)
R(Class ω2 is chosen) = λ12p(ω1|x) + λ22p(ω2|x) = R(ω2|x)
According to the decision rule, the class corresponding to the lowest risk is chosen. Thus
class ω2 is chosen if R(ω1|x) > R(ω2|x)
⇔ (λ11−λ12)p(ω1|x) > (λ22−λ21)p(ω2|x)⇔ (λ11−λ12)p(x|ω1)p(ω1) > (λ22−λ21)p(x|ω2)p(ω2)
⇔ p(x|ω1)

p(x|ω2)
< λ22−λ21

λ11−λ12

p(ω2)
p(ω1)

where in the last stage it is assumed that λ11−λ12 < 0, ie. the cost of choosing the correct
class is assumed to be lower than choosing a wrong class (as should be expected).

Now p(x|ω1) = 0.5e−1|x|, p(x|ω2) = e−2|x−2|, λ22−λ21

λ11−λ12
= 1

2 and the classes have some a priori

probabilities and can be stated as p(ω1) = p and p(ω2) = 1− p. Thus R(ω1|x) > R(ω2|x)
⇔ 0.5e−1|x|

e−2|x−2| <
1
2
1−p
p ⇔ e−1|x|+2|x−2| < 1

p − 1
Now by taking the natural logarithm of both sides and dividing the situation into three
cases we can see that

x < 0 : x = 4− ln ( 1p − 1)
0 ≤ x ≤ 2 : x = 4

3 − 1
3 ln (

1
p − 1), the decision boundary

x > 2 : x = 4 + ln ( 1p − 1)

R2 is reduced to an empty area if
p(x|ω1)
p(x|ω2)

> 1
2
1−p
p , ∀x. As p(x|ω2) decreases faster than

p(x|ω2), it is sufficient that 0.5e
−1|x|

e−2|x−2| >
1
2
1−p
p is true when p(x|ω2) is at it’s maximum value

of 1: y = 2⇒ p(x|ω1) = 0.5e−2. Then
p(2|ω1)
p(2|ω2)

> 1
2
1−p
p ⇒ 0.5e−2 > 1

2(
1
p − 1) ⇒ p > 1

e−2+1



3. Class ω1 is selected if

p(x|ω1)
p(x|ω2)

< λ22−λ21

λ11−λ12

p(ω2)
p(ω1)

, p(x|ωi) = 1√
2πσi

e
−x2

2σ2
i

σ21 > σ22 ⇒ x2 > 2
1

σ2
2

− 1

σ2
1

ln (λ22−λ21

λ11−λ12

p(ω2)
p(ω1)

σ1

σ2
)

⇔ |x| >
√

2
2−1 ln (7

1−0.7
0.7

√

1
0.5) =

√

2 ln (3
√
2) ≈ 1.70

Thus the given samples are classified as {x̂1 = 2.8, x̂5 = −1.9} ∈ ω1 and
{x̂2 = 0.2, x̂3 = 1.4, x̂4 = −0.6} ∈ ω2.

4. a) A Gaussian distribution for a d-dimensional random variable x can be written as

p(x) = (2π)−d/2|Σ|− 1

2 e−
1

2
(x−µ)TΣ−1(x−µ)

The Bayes decision rule with λ22−λ21

λ11−λ12
= 1 and p(ω2)

p(ω1)
= 1 is

if p(x|ω1) > p(x|ω2), select ω1,
if p(x|ω1) < p(x|ω2), select ω2

On the decision surface p(x|ω1) = p(x|ω2). And since we can also use any monoto-
nically increasing function, lets use the natural logarithm, resulting in

ln(p(x|ω1)) = ln(p(x|ω2))
−12(x− µ1)

TΣ−11 (x− µ1)− 1
2 ln |Σ1| = −12(x− µ2)

TΣ−12 (x− µ2)− 1
2 ln |Σ2|

[x1 x2]

[

1 0
0 4

]−1 [
x1
x2

]

+ ln

∣

∣

∣

∣

1 0
0 4

∣

∣

∣

∣

=

[(x1 − 4) x2]
[

1/4 0
0 1

]−1 [
x1 − 4
x2

]

+ ln

∣

∣

∣

∣

1/4 0
0 1

∣

∣

∣

∣

x21 +
1
4x
2
2 − 4x21 + 16x1 + 16x1 + 64− x22 = −2 ln 4

(x1 − 16
3 )
2 +

x2

2

4 =
1
3(2 ln 4− 64) + ( 163 )2 = a2 ≈ 8.03

Thus the decision surface is

(x1 − 16
3 )
2

a2
+

x22
(2a)2

= 1



b) As in a),

ln(p(x|ω1)) = ln(p(x|ω2))
−12(x− µ1)

TΣ−11 (x− µ1)− 1
2 ln |Σ1| = −12(x− µ2)

TΣ−12 (x− µ2)− 1
2 ln |Σ2|

[x1 (x2 − 4)]
[

1 0
0 4

]−1 [
x1

x2 − 4

]

+ ln

∣

∣

∣

∣

1 0
0 4

∣

∣

∣

∣

=

[(x1 − 4) x2]
[

4 0
0 1

]−1 [
x1 − 4
x2

]

+ ln

∣

∣

∣

∣

4 0
0 1

∣

∣

∣

∣

x21 +
1
4(x2 − 4)2 = 1

4(x1 − 4)2 + x2
(x1 +

4
3)
2 = (x2 +

4
3)
2

Thus the decision surface is
{

x1 +
4
3 = x2 +

4
3

x1 +
4
3 = −(x2 + 4

3)
⇒

{

x2 = x1

x2 = −x1 − 8
3

As the two lines divide the space into four segments, which class each segment be-
longs to can easily be verified by calculating one point in each segment and checking
which class that point would be assigned to. Let’s choose the points (0,− 4

3), (−43 , 0),
(−83 ,−43) and (−43 ,−83).

x1 x2 (x1 +
4
3)
2 (x2 +

4
3)
2 ω

I 0 −43 16
9 0 ω2

I −43 0 0 16
9 ω1

I −83 −43 16
9 0 ω2

I −43 −83 0 16
9 ω1

(If (x1 +
4
3)
2 > (x2 +

4
3)
2, x ∈ ω2. If (x1 +

4
3)
2 < (x2 +

4
3)
2, x ∈ ω1.)



5. The Poisson distribution: p(x|λ) = λxe−λ

x! , x ≥ 0. The maximum likelihood estimate for the
parameter λ: p(H|λ) = ∏n

k=1 p(xk|λ), where H = {x1, . . . , xn} is the sample set.
The maximum likelihood estimate can be found by maximizing p(H|λ). The same solution
can also be found by maximizing the functions natural logarithm, as the logarithm function
is monotonically increasing. The maximum can be found by setting the derivative regarding
λ to zero,

δ
δλ ln{p(H|λ)} = δ

δλ

∑n
k=1(xk ln(λ)− λ− ln(xk!) =

∑n
k=1(xk

1
λ − 1) = 1

λ

∑n
k=1 xk − n = 0

⇒ λ̂ = 1
n

∑n
k=1 xk

For an unbiased estimate E{θ̂} = θ.

E{λ̂} = E{ 1n
∑n

k=1 xk} = 1
n

∑n
k=1E{xk} = E{xk} = λ, as for the Poisson distribution

E{x} = λ.

Thus λ̂ is unbiased.


