
T-61.231 Principles of Pattern Recognition
Answers to exercise 1: 23.9.2002

2. Principal Component Analysis (PCA) produces principal components orthogonal to each
other. The principal component transformation is closely related to the Karhunen-Loévé
and Hotelling transforms, all of which employ the same base idea of eigenvector use to
create a linear transform.

Let x be a population of random vectors and mx = E(x) be the mean of the random vector
population. The covariance matrix of x is defined as Cx = E((x−mx)(x−mx)

T ). Because
Cx is real and symmetric, it is always possible to find a set of n orthonormal eigenvectors,
and it can be stated that

Cx = ATΛA

Where A is the matrix whose rows are formed from the eigenvectors of Cx and Λ is
a diagonal matrix with the corresponding eigenvalues. Taking A as the transformation
matrix, the transformation can be written as

y = A(x − mx)

Resulting from this transformation, the mean of the y vectors is zero and the covariance
matrix of the y’s can be written as

Cy = E(yyT ) = ACxA
T = AATΛAAT = Λ

ie. the covariance matrix of y is a diagonal matrix consisting of the eigenvalues of the
original covariance matrix Cx. Thus, as long as none of the eigenvalues are zero (which
would indicate that one component had full correlation with some other and contained no
additional data), the variance of the y’s can easily be scaled to 1. In some cases this is
taken a bit further by also decomposing the eigenvalue-matrix Λ and joining it into the
transformation matrix A by setting

Cx = AΛAT = AΛ1/2T
IΛ1/2AT = A∗IA∗T

When using the transformation matrix A∗, it is obvious that the variance of y is I (a
diagonal matrix consisting of ones).

By ordering the eigenvectors and values so that the first row of A corresponds to the
largest eigenvalue and the last row to the smallest eigenvalue, or in order of decreasing
variance after the transform, the transformation can reduce the amount of needed data.
By taking the first m principal components to create Am for the data projection, we get a
transformation of the form

ŷ = Am(x − mx)

This projection is optimal in the sense that it minimizes the mean square error (MSE) for
any approximation with m components. The MSE becomes, for an initially K dimensional
set of data (cf. pages 184–186 in Theodoridis),

E(||x − x̂||2) =
K−1
∑

i=m

λi

Example from Digital Image Processing, Gonzales & Woods, Addison-Wesley 1993; When
performing the transformation on data obtained from a six-band multi-spectral scanner,
the eigenvalues of the covariance matrixes were calculated. The resulting ordered eigenva-
lues were



λ1 λ2 λ3 λ4 λ5 λ6

Eigenvalue 3210 931.4 118.5 83.88 64.00 13.40
Percentage of total 72.61 21.07 2.68 1.9 1.45 0.3

3. The ambiguity function can be of great use in feature selection, especially in a multi-class
situation. The estimation of the required probability functions is in general easy.

A = −
∑

i

∑

j

P (∆j)P (ωi|∆j) logM (P (ωi|∆j))

Completely overlapping distributions: P (ωi|∆j) is constant, P (ωi|∆j) =
1
M ∀i. Thus

A = −
∑

i

∑

j P (∆j)P (ωi|∆j) logM (P (ωi|∆j))

= −M
∑K

j=1 P (∆j)
1
M logM ( 1

M )

= −
∑K

j=1 P (∆j)(logM 1 − logM M)

= −
∑K

j=1 P (∆j)(0 − 1)

=
∑K

j=1 P (∆j)

= 1

Completely separate distributions: P (ωi|∆j) = 1 ⇒ P (ωk|∆j) = 0 ∀k 6= i. Thus for all
other distributions at each point the term P (∆j)P (ωi|∆j) logM (P (ωi|∆j)) = 0, and

A = −
∑

i

∑

j P (∆j)P (ωi|∆j) logM (P (ωi|∆j))

= 0 + −
∑K

j=1 P (∆j) · 1 · logM (1)

= −
∑K

j=1 P (∆j) · 0

= 0

And for those concerned with the expression P (∆j)P (ωi|∆j) logM (P (ωi|∆j)) = P (∆j)0 ·
logM (0) = 0, it is a commonly accepted convention (see, for example, definitions of Entropy
in books that care to define entropy “properly” also for zero probabilities - which is surpri-
singly often not the case, but for example ftp://wol.ra.phy.cam.ac.uk/pub/mackay/info-
theory/l1.pdf ) that 0 · logk(0) = 0, since limx→0+ x logk(x) = 0 for all k.

4. The motivation for this to prove that variance for the estimated classification error can be
calculated using formula 10.7 (Theodorodis p.339, Error Counting Approach). A help in
solving this exercise is provided by knowledge of the binomial formula,

n
∑

k=0

(

n

k

)

an−kbk = (a+ b)n

The expectation value can be written as

E[k] =
∑N

k=0

(

N
k

)

kP k(1 − P )N−k

=
∑N

k=0
N !

k!(N−k)!kP
k(1 − P )N−k

=
∑N

k=1
N !

k!(N−k)!kP
k(1 − P )N−k

= PN
∑N

k=1
(N−1)!P (k−1)(1−P )(N−1−(k−1))

(k−1)!(N−1−(k−1))!

= PN
∑N

k=1

(

N−1
k−1

)

P (k−1)(1 − P )N−1−(k−1)

= PN(P + 1 − P )(N−1)

= PN



Since the variance can be stated as var[k] = E[k2] − E[k]2, we need to calculate E[k2].

E[k2] =
∑N

k=0

(

N
k

)

k2P k(1 − P )N−k

=
∑N

k=0
N !

k!(N−k)!k
2P k(1 − P )N−k

= PN
∑N

k=0
(N−1)!kP k−1(1−P )(N−1−(k−1))

(k−1)!(N−1−(k−1))!

= PN
∑L=N−1

l=k−1=0
(L)!(l+1)P l(1−P )(L−l)

(l)!(L−l)!

= PN [PL
∑L

l=0
(L−1)!P l(1−P )(L−1−(l−1))

(l−1)!(L−1−(l−1))! + 1]

= PN [P (N − 1) · 1 + 1]
= PN(PN − P + 1)
= P 2N2 − P 2N + PN

And thus
var[k] = E[k2] − E[k]2

= P 2N2 − P 2N + PN − P 2N2

= NP (1 − P )


