
T-61.231 Principles of Pattern Recognition
Answers to exercise 10: 2.12.2002

1. The two Matrix Updating Algorithmic Scheme algorithms, the single and complete link
algorithm, are presented in Theodoridis, pp. 408-409. In brief, the algorithms are based
on updating the proximity matrix P in a way that:

1. find the matrix Pt values Ci, Cj such that d(Ci, Cj) = minr,s=1,...,N,r 6=s d(Cr, Cs)

2. merge Ci, Cj into a cluster and form the new Pt+1. This is done by deleting the two
rows and columns that correspond to the merged clusters and adding a new row and
a new column that contain the distances between the newly formed cluster and the
old clusters according to the selected distance measure d(· · ·).

3. repeat if more rows (or columns) still exist

The distance functions are

d(Cq, Cs) = min{d(Ci, Cs), d(Cj , Cs)} (single link algorithm)

d(Cq, Cs) = max{d(Ci, Cs), d(Cj , Cs)} (complete link algorithm)

Thus, for the single link algorithm we have













0 4 9 6 5
4 0 1 8 7
9 1 0 3 2
6 8 3 0 1
5 7 2 1 0













join 4,5
→









0 4 9 5
4 0 1 7
9 1 0 2
5 7 2 0









join 2,3
→





0 4 5
4 0 2
5 2 0





join (2,3)
and (4,5)

→

[

0 4
4 0

]

and for the complete link algorithm,













0 4 9 6 5
4 0 1 8 7
9 1 0 3 2
6 8 3 0 1
5 7 2 1 0













join 4,5
→









0 4 9 6
4 0 1 8
9 1 0 3
6 8 3 0









join 2,3
→





0 9 6
9 0 8
6 8 0





join 1
and (4,5)

→

[

0 9
9 0

]

The same results are also obtained, if the pair (2,3) is merged first. The dendreograms for
the operations are thus

1 2 3 4 5 1 2 3 4 5

Single link algorithm: Complete link algorithm:

This example illustrates the common trend for the single link algorithm to produce first
an elongated cluster, whereas the complete link algorithm proceeds by recovering compact
clusters.

2. If the image consisting of k × k pixels is coded with 3 8-bit colors, the total amount of
bits per image is naturally 24k2. When using LBG coding, we code a k × k window with
respect to code vectors, and with n bits we have naturally 2n code vectors. (Or 2n code
vectors can be obtained with n bits).

Thus, the compression ratio is n
24k2

3. An example solution with two inputs:

m1

m3m5

m2

m4
input

m1m2

m4

m5

m3 input

m4

m3
m1

m5

m2

First, m4 is the nearest unit Second, m1 is the nearest unit The final ordering
(m4,m3,m5 updated) (m1,m2,m5 updated)

4. Using the energy function C =
∑

q

∑

r h(r − q)
∑

x∈Vr

||x−mq||
2

(a) First derivate with respect to mq and set to zero;

∂C

∂mq

=
∑

r

h(r − q)
∑

x∈Vr

(−2)(x−mq) = −2
∑

r

h(r − q)
∑

x∈Vr

(x−mq) = 0

(b) Now we have cr =
1

N

∑

x∈Vr

x. Thus

−2
∑

r

h(r − q)(Ncr −Nmq) = 0⇔ mq =

∑

r h(r − q)cr
∑

r h(r − q)

Now if the sum of the neighborhood function over all the units is 1 (ie.
∑

r h(r − q) = 1),
the proposed mq =

∑

r h(r − q)cr follows.

5. First, a brief introduction to the Learning Vector Quantization - algorithm. There are
several variations of LVQ, but a basic Learning Vector Quantization (LVQ) approach may
be defined as:

• Take mi prototype vectors (also often called codebook vectors). There may be one
or more prototype vectors per class, usually more than one is used.

• Let c = argmini(||x−mi||) define the nearest prototype to an input vector x, denoted
by mc. When classifying, x is usually taken to belong to the class of it’s nearest
prototype vector, but mc is also used in the learning phase.

• Now the learning proceeds (with modifying only the nearest prototype mc(t) for the
input x(t) each step t) as in

mc(t+ 1) = mc(t) + α(t)[x(t)−mc(t)], if x and mc belong to the same class and

mc(t+ 1) = mc(t)− α(t)[x(t)−mc(t)], if x and mc belong to different classes.

0 < α(t) < 1 is the learning coefficient.

• α(t) may be constant or decrease monotonically with time. For example in the lvq pak
LVQ1, an α initially smaller than 0.1 and decreasing linearly with time is used. The
iteration is generally stopped either after a predefined number of steps, when α(t)
reaches its minumum value or when a desired training set error rate is reached.

Now to the task at hand. It is very intuitive that the weights would converge at 0 and 1,
respectively. Now, to prove this let’s first consider the most difficult situation, where the
weight vectors w1 and w2 are on the wrong sides of the input:

x x1 2

w w12

The input sequence is a stochastic process and in some stage either one of the weights will
be the best matching unit for all the inputs:

|w2|+ 1 < w1 or w1 < |w2|+ 1
(w2 always wins) (w1 always wins)

Let us consider the latter case: If the input belongs to class ω1, ∆w1 = α(0− w1). If the
input belongs to class ω2, ∆w1 = −α(1 − w1). The prior probabilities of the classes are
equal: E[∆w1] =

1

2
α(−w1 − (1− w1) = −1α

2
, E[∆w2] = 0.

This means that w1 drifts to the left whereas w2 remains still. At some point w1 passes w2,
which then becomes the best matching unit for all the inputs. In this situation E[∆w1] = 0
and E[∆w2] =

α
2
. Now w2 drifts to the right until |w1| < w2 and |w1|+1 > w2 − 1, which

means that each of the weight vectors are the best marching unit for their own input
cluster.

Eventually the weights will converge to the points w1 = 0 and w2 = 1. Every other initial
setting will lead to a situation described at some stage above. Therefore, the weights will
always converge to the correct positions.

