
T-61.231 Principles of Pattern Recognition
Exercise 7: 11.11.2002

1. When a MLP is used for a classification task, the number of output units is usually same
as the number of classes. The desired output is zero for all but one neuron at a time and
each output neuron corresponds to one of the classes. The input is classified into that class
whose output neuron is most active.

Let us consider a single output neuron whose output is y(x) when the input of the network
is x and the desired output is d. The cost functional concerning only this single neuron
and which is minimized by back-propagation algorithm has the following form:

J =
1

N

N
∑

k=1

(

y(xk)− dk
)2

,

where N is the number of learning samples. If N is very large, the cost functional approx-
imates the following expectation:

J = Ex,d[(y(x)− d)2] .

Show that the solution which minimizes the cost functional is the optimal discriminant
function of Bayes classifier:

y(x) = P (d = 1|x) .

2. Output of the perceptron unit is y and its inputs x1, ..., xn are continuous-valued. Neuron
calculates its output according to the following function:

y = tanh(
n
∑

i=1

wixi − θ) .

Neuron tries to learn to give desired output d for inputs x1, ..., xn. One method to do
this is to minimize function (y − d)2. When a gradient descent method is used for the
minimization task, it can be shown that the gradient step has the form ∆wi = f(y, d)xi.

Derive function f(y, d) in this case.

3. Let us consider back-propagation algorithm in a 2-layer MLP, which has 2 neurons in both
output layer and hidden layer and 2 inputs. Wij are the weights of the output layer and
Θj are the offset parameters, where j = 1, 2 is the index of the neuron and i = 1, 2 the
index of the hidden unit, where the input comes from. Similarly wkl and θl are the weights
and offsets of the hidden layer. All neurons have ’logsig’ as an activation function.

Derive back-propagation algorithm to update all the parameters. Let us assume on-line
learning, which means that the network learns immediately after the new (input,output)-
pair has been given.



4. Show that if the cost function, optimized by a multilayer perceptron, is the cross-entropy

J = −
N
∑

i=1

kL
∑

k=1

yk(i) ln
ŷk(i)

yk(i)

and the activation function is the sigmoid f(x) = 1
1+exp(−ax) , then the gradient

δL
j (i) =

∂E(i)

∂vL
j (i)

becomes δL
j (u) = a(1− ŷj(i))yj(i). (Theodorodis 4.6, p. 130 )

5. Repeat the previous problem for the softmax activation function

ŷk(i) =
evL

k

∑L
k′=1 e

vL

k′

.

(Theodorodis 4.7, p. 130; note the (probable) error in the book’s exercise (the answer is
ŷj(i)yj(i)− yj(i)))

6. The following scheme for adaptation for the learning parameter µ has been proposed by
C. Darken and J. Moody (1991):

µ = µ0
1

1 + t
t0

Verify that, for large enough values of t0 (eg. 300 ≤ t0 ≤ 500), the learning parameter is
approximately constant for the early stages of training (small values of iteration step t)
and decreases in inverse proportion to t for large values. The first phase is called search
phase and the latter convergence phase. Comment on the rationale of such a procedure.
(Theodorodis 4.16, p. 131)


