T-61.231 Principles of Pattern Recognition

Exercise 5: 21.10.2002

1. Means of two classes are found to be $\underline{m}_{1}=\left(\begin{array}{ll}-2 & -2\end{array}\right)^{T}$ and $\underline{m}_{2}=\left(\begin{array}{ll}2 & 2\end{array}\right)^{T}$. Inner-class scatter matrices are (α is a parameter)

$$
\mathbf{S}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \mathbf{S}_{2}=\left[\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right] .
$$

a) Draw the density functions of the classes by assuming classes to be (approximately) Gaussian distributed.
b) Calculate the direction of Fisher's linear discriminant by using the formula $\underline{\hat{\hat{w}}}=$ $S_{W}^{-1}\left(\underline{m_{1}}-\underline{m_{2}}\right)$ (equation 4-12 in the book by Schalkoff).
c) Find the direction of Fisher's linear discriminant by calculating eigenvectors for matrix $S_{\omega}^{-1} S_{B}$.
d) Sketch Fisher's linear discriminant, when $\alpha=1, \alpha=4, \alpha \rightarrow \infty, \alpha \rightarrow 0$. Does the result look reasonable?
2. Let's choose the nominator of the equation (4-6b) in Schalkoff to be a criterion function for Fisher's linear discriminant. That means we neglect the variance of the projected data inside the class. Our criterion function is then $J(\omega)=\left(\bar{m}_{1}-\bar{m}_{2}\right)^{2}$. Maximize $J(\omega)$.
3. Prove that given $O(N, l)$ is the number of groupings that can be formed by $(l-1)$ dimensional hyperplanes to separate the N points into two classes, taking all possible combinations

$$
O(N, l)=2 \sum_{i=0}^{l}\binom{N-1}{i}
$$

