## T-61.231 Principles of Pattern Recognition

Exercise 3: 7.10.2002

1. Formulate a one-dimensional Parzen estimate for density function $p_{y}$ from given samples

$$
y^{(i)}: 2.5,2.8,3.4,4.2,4.5,4.7,5.2,5.6,7.5
$$

Use a rectangular window function.
2. Classify points $A, B$ and $C$ in figure using the 5 -nearest neighbour classification rule and an Euclidean distance function.

3. Applying the nearest neighbour classification rule for two classes (figure), decision regions and boundary are received for these classes. If $\mathbf{y}^{(i)}$ are sample vectors from class 1 and $\mathbf{s}^{(i)}$ sample vectors from class 2 , then according to the definition any point $\hat{\mathbf{y}}$ lying in the boundary satisfies the equation

$$
\min _{i} d\left(\hat{\mathbf{y}}, \mathbf{y}^{(i)}\right)=\min _{i} d\left(\hat{\mathbf{y}}, \mathbf{s}^{(i)}\right)
$$

Assume distance function to be Euclidean.
a) What is the equation for a decision boundary in a small region near the boundary if constant vector $\mathbf{y}^{(i)}$ is nearest to the boundary from class 1 and $\mathbf{s}^{(j)}$ is constant vector nearest to the boundary from class 2 ?
b) Draw a perfect decision boundary for classes in figure.
c) Find those sample vectors, whose extraction doesn't change the decision boundary.

