T-61.231 Principles of Pattern Recognition

Exercise 2: 30.9.2002

1. The pattern space is 1-dimensional (the x axis) and the densities of two classes are

$$
p\left(x \mid \omega_{1}\right)=0.5 e^{-\left|x-m_{1}\right|}, p\left(x \mid \omega_{2}\right)=e^{-2\left|x-m_{2}\right|}
$$

a) Let $m_{1}=0, m_{2}=2$ and the decision regions $R_{1}=\{x \mid x \leq 1\}$ and $R_{2}=\{x \mid x>1\}$.

Compute the probabilities of error ϵ_{1} and ϵ_{2}. Plot a figure.
b) How should one place the border between R_{1} and R_{2}, in order that $\epsilon_{1}=\epsilon_{2}$?
2. Assume now that the ratio of the costs of incorrest decisions for the class densities given above (exercise 1) is $\left(\lambda_{21}-\lambda_{22}\right) /\left(\lambda_{12}-\lambda_{11}\right)=\frac{1}{2}$. Compute the borders of the region R_{2} as functions of the a priori probability p. Find those values of p, for which R_{2} is reduced to an empty region. We assume here that the classifier is Bayesian.
3. Take two densities $p\left(x \mid \omega_{1}\right)$ and $p\left(x \mid \omega_{2}\right)$ to be Gaussian densities of a scalar variable with variances $\sigma_{1}^{2}=1$ and $\sigma_{2}^{2}=0.5$ and equal means $(=0)$. Assume that the other parameters are $P\left(\omega_{1}\right)=0.7$ and $\left(\lambda_{21}-\lambda_{22}\right) /\left(\lambda_{12}-\lambda_{11}\right)=7$. How do you classify the following patterns: $\hat{x}_{1}=2.8, \hat{x}_{2}=0.2, \hat{x}_{3}=1.4, \hat{x}_{4}=-0.6, \hat{x}_{5}=-1.9$?
4. Assume a two-class Bayes classifier where the patterns in the two classes are Gaussian distributed with parameters
a)

$$
\mu_{1}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \mu_{2}=\left[\begin{array}{l}
4 \\
0
\end{array}\right], \boldsymbol{\Sigma}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right], \boldsymbol{\Sigma}_{2}=\left[\begin{array}{cc}
\frac{1}{4} & 0 \\
0 & 1
\end{array}\right]
$$

b)

$$
\mu_{1}=\left[\begin{array}{l}
0 \\
4
\end{array}\right], \mu_{2}=\left[\begin{array}{l}
4 \\
0
\end{array}\right], \boldsymbol{\Sigma}_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right], \boldsymbol{\Sigma}_{2}=\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right] .
$$

For both cases, plot the decision surface and the approximative shapes of the densities $p\left(\mathbf{x} \mid \omega_{1}\right)$ and $p\left(\mathbf{x} \mid \omega_{2}\right)$. We may assume that $P\left(\omega_{1}\right)=P\left(\omega_{2}\right)=1 / 2$ and $\lambda_{21}-\lambda_{11}=\lambda_{12}-\lambda_{22}$.
5. Let $x_{1}, x_{2}, \ldots, x_{n}$ be independent non-negative integers from Poisson distribution with expectation value $E[x]=\lambda$. This corresponds to a discrete distribution $p(x \mid \lambda)=\lambda^{x} e^{-\lambda} / x!, x \geq 0$, when $E[x]=\operatorname{Var}[x]=\lambda$. Find the maximum likelihood estimate for the parameter λ. Is it unbiased?

