T-61.231 Principles of Pattern Recognition Exercise 10: 2.12.2002

1. Consider the following proximity matrix:

	0	4	9	6	5	
	4	0	1	8	7	
P =	9	1	0	3	2	
	6	8	3	0	1	
	5	7	2	1	0	

Apply the single and complete link algorithms to P and comment on the resulting dendreograms. (*Theodoridis, exercise 13.10, p. 437*)

- 2. The C-means clustering algorithm (or the LBG coding algorithm) can be used for the coding of images. What is the compression ratio if windows of $(k \times k)$ pixels sampled from a colored image (8 bits/color, 3 colors) are coded using 2^n code vectors.
- 3. Let us consider 1-dimensional self-organizing map (SOM), where both weights of neurons m_i and input vectors x are always in the unit circle. That means they are angles between $[0, 2\pi]$. There are 5 weights and their locations in the beginning of the learning are shown in Figure 1.

Figure 1:

Learning rule (Kohonen's rule):

- 1. Choose point x arbitrarily from the unit circle.
- 2. Find among 5 weights the Best Matching Unit (BMU) m_c whose distance (angle) from the point x is the smallest.
- 3. Update the weight m_c and its 2 nearest neighbors. Neighborhood is defined so that e.g. neighbors of m_3 are always (independent from the location) m_2 and m_4 . Neighborhood is cyclical: neighbors of m_5 are m_4 and m_1 , and similarly neighbors of m_1 are m_5 and m_2 . Weights are updated so that they are moved along the shortest route to the point in the middle of the input x and their current location.

The problem is: you have to arrange the weights into the ascending or descending order in the unit circle by using the learning rule given above. You may choose inputs x arbitrarily. Try to minimize the number of learning steps.

(Hint: minimum solution has 2 steps, that means only 2 inputs x have to be chosen. Can you find out how?)

4. Assume the energy function

$$C = \sum_{q} \sum_{r} h(r-q) \sum_{x \in V_r} \|x - m_q\|^2$$

where r and q are map indices, m_q are neuron weights, h(r-q) is the space invariant neighborhood function, and V_r is the set of input points for which neuron r is the bestmatching unit. It can be shown that this is an energy function for the Kohonen algorithm if the set of input points is finite.

a) Form the gradient of function C with respect to the weight vector m_q and let it be zero. This defines an equilibrium point for the net.

b) If we assume that all the sets V_r have an equal amount of N points, and the average of set V_r is denoted as

$$c_r = 1/N \sum_{x \in V_r} x,$$

show that in the equilibrium point defined by a) it holds

$$m_q = \sum_r h(q-r)c_r.$$

5. LVQ1-algorithm is applied for one-dimensional task in which the inputs are from two classes. The prior probabilities of the classes are equal. The value of input x is zero or one if it belongs to class ω_1 or ω_2 , respectively. Each class is presented with a single weight, w_1 or w_2 . Where do the weights converge? Consider different initial values for the weights.