T-61.231 Principles of Pattern Recognition
Answers to exercise 6: 5.11.2001

1. The objective is to find the minimum regarding w for the joint distribution expectation value,

min By 4[(y(z) — d)’]

It helps to recall that Ey g -] = Ep[Eq[---]] and Eq[Eq[ - ]] = Egel -]
Now to the task at hand;
By d(y(z) — d)?] = Epal((y(z) - Ed|m[d]) (Eqzld] — d))?]

= E, d[( (@) = Bg[d])” + 2(y(2) — Egpeld]) (Byjz[d] — d) + (Eqp[d] - d)?]
= Eq[Eqs[(y() — Eqild])’] + 2(Eaply(2)] — Eapeld]) (Bgjz[d] — Egald]) + (Egiold] — Eqpold])?]
= Eq[Eqs[(y(=) — Eqild])’]]

So miny, E; 4[(y(z) — d)?] = ming Fy[Eq,[(y(z) — Ed|$[d])2]]. Since the term (y(z) — Ed|m[d])2 > 0, the

expectation is minimized when
(Y(@) = Bygld))’ = 0= y(z) = By,[d]
And
Eyjz[d] = P(d = 1|z) ¥ 1+ P(d = 0lz) x 0 = P(d = 1|z)
Which is the optimal discriminant function for a Bayesian classifier.

2. y=f(o) = f(3;_, wiz; — 0) is the actual output of the perceptron and d is the desired output.
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The squared error E = (y — d)? is minimized using the gradient descent method. The gradient descent

method moves the parameter vector w? = (w1, ws,... ,w,,#) to the opposite direction of the gradient
OE\.

V'LUE (611)1 .. ’W) 8E

w;{zew _ old + Aw = wold =

8wi
According to the chain rule g—Ei = %—E% 3‘331
OE a . dtanh T _,—z

Now we have 7~ = 2(y — d), 2 =1—y? (since %(m) = 1 — tanh(z)?,tanh(z) = Sre=) and
66_u())i = Tj.

Thus we can write Aw; = f(y,d)z;, where f(y,d) = —n(y — d)(1 — 3?).



. With a hidden layer and an output layer

o= wyzk — 0y, yi = f(oy) (hidden layer)

2
Oy =) Wiy — Oy, Y; = f(0;) (output layer)

=1

The back-propagation algorithm updates the parameters by minimizing the squared error E = ||Y —D|[?
using the gradient descent method. Y is the output of the network and D is the desired output.

2 2 2
E=|Y -D|’ =) (Y;—D;)> = (f(0j) = Dj)* = > (fO_ Wiyi — ;) — D))’
j=1 j=1 j=1  i=1
Now we have the logsig function f(z) = 1+i—w’ S0 dlog;;g(z) = logsig(z)(1 — logsig(x)).

For the output neurons, with the chain rule,

OF _ OE 0Y; 00,
oWy,  dY; 00; OWy;

aW = y;. Also ggﬂ = —1. Now let

Here 3E =2(Y; - Dj), 5 aYJ =Y;(1 - Y;) (derivative of logsig)
R

Thus

SE-=2(Y; - D)Y;(1 ~Y;)yi=26y;
2
gg;—— (Y; - Dj)Y;(1 - Yy)=—25"

And the update rules become, with the learning parameter 7,

Wi =Wy e )

{t+1) 6”+n5( )

And for the hidden layer neurons, again using the chain rule,

OF 2 OE 0Y; 80; dy; do;

B~ 24=1 0, 90; 3y Do, Dwn:
_ZJ 12(Y; — D; )Y( = Y))Wiu(1 — yi)zp
=2y1(1 — i)z EJ 1Y = Dj)Y;(1 — Y5) Wi
_2yl(1 - yl)xk EJ 1 5_5 )Wz]




Now let 6}1) =yl —y) YL 5(2)W Now

J=1%4
t+1 t 1
{ s { g _nééi))(t)xk(t)
+
55=—20, 0,""=0," +nd; " (t)
4. The cross-entropy function to be optimized is J = —va 1 ZﬁLlyk(z)ln(‘ZZEg) and the activation

function is the sigmoid f(z) = The gradient 6% (i) can be calculated from the energy

3 ] 1—|—exp( azx)”
function, and since

]
J = E =— In -
Z yk( ) (yk (’L) )
Thus
L 240
3 ()=3,10
_ Oyg(8) In(r (1) /yx (1))
ka (%)
== weli) (s I 0) — gofy I ))
—_yk(z) avg(i) In Qk(’l)
__yk(i)au,g(i) ln(1+ _}wLu))
:—yk(z)avg {Inl1 —In(1+e a'uk())}
I 40
:_yk(z) —a'ul}')’(z)
1+e k
=—ay(i) [ -1+ —2
1+e avy (i)
=ayk(2)(1 — g ()
5. The cross-entropy function to be optimized is J = —ZZ 1 Zk 1 Yk(i )ln(ZZ—(g) Using the softmax
’UL
activation function g (z) = ﬁ
2gr—ye ¥
. 0E(i
6]% (Z): 6UL((ZZ))
__ 9ye() In(@*(9) /yx (1)
ka ()

Note: the result 5JL(u) = 9;(i) — y;(i) shown in the books assignment (Theodorodis 4.7, p. 130) and
also in the original exercise paper would appear to be incorrect and is probably just an error in the
book.



6. The behavior of the function can easily be seen, as

_ r to
N—Hol_l_% _Moto-l-t
It is rather obvious, that when ¢t << tg u =~ i—g,uo = pg-. For example, if tg =400 and ¢t = 1, u =~ 0.998 .
Also, when t >> tg, p = %0 o which is inversely proportional to t.

The behavior in both situations has been illustrated in the figures below.

mug =1, 1= 10000....40000, , = 400

mu,=1,t=0,..,10, 1, = 400
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