T-61.231 Principles of Pattern Recognition
Answers to exercise 4: 22.10.2001

1. A Gaussian distribution has two parameters: a mean vector & and covariance matrix ..
S — S 1 n; (— 2N — 2T
i =m; and X = 5 >0 | (T — 1) (Th — Ta)

a) Lets assume that there are approximately as many samples from both classes (n; = ny). Now we
can draw both distributions in the same picture and use the same scale for both of them.

The density of class 1 is symmetric as the diagonal elements of S; are equal. As for class 2, the
density is expanded in the direction of the “width” of the distribution on the z;-axis depends on
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¢) To determine the eigenvectors of SV_V1 Sp we first calculate the between-class scatter matrix Sp from
Sp = (m1 —mz) (M1 — ma)~.
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The eigenvectors for matrix A are defined as AT = A\ = (A — AI)T = 0. A nontrivial solution
exists, if det(A — AI) =0
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Thus the eigenvalues are A\; =0 and Ao = 8 + 111_—6(1 (Note that a = % > 0).

The eigenvector corresponding to the larger eigenvalue: A€ = g€, where & = [e; e3]?. Thus
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Calculating from the lower row (the same result can be obtained from the upper row, too)
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As can be seen, both methods produced a vector of the same orientation, as was to be expected.
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d) The Fisher linear discriminant is thus w = 1‘{“ ],mlz( -2 =2) m,=(2 2)7,
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The discriminants seem quite valid, as it can be seen that by projecting the distributions onto the
discriminant in all cases the distributions become well separable.



2. Let’s denote the function slightly differently for the proof; let I =d—1<< d =1—1 and O(N,I) =
C(N,d), where

C(N,d) zzg (Nk_1>

In my opinion this is more illustrative, as we are actually using the dimension of the space d instead
of constantly using [ to denote [ — 1 dimensional space. C(N,d) tells us the number of groupings that
can be formed by d-dimensional hyperplanes to separate the N points into two classes.

First we need to prove that C(N + 1,d) = C(N,d) + C(N,d — 1).

Let C(N,d) be a separable set of dichotomies X. Let’s take a new point zy1 so that X U{zn41}
is in the general position (well distributed). Let there be a vector w that divides X into two sets
X={X",X"}sothatw-z>t=>z€ X" andw-z <t= € X, where ¢ is a scalar.

If {X*, X} is separable, must also either {X+ U{zny1},X "} or {X T, X~ U{zny1}} be separable.
However, they both are separable if and only if Jw that is a vector that separates {X*, X }ina (d—1)
dimensional space and is orthogonal to zy1

To prove the prior statement regarding w, let the set of separating vectors W = {w : w-z > t,z €
XT;w-z <t,x € X }. The set {X+tU{zn+1}, X} is homogeneously separable if and only if 3w € W
so that w - zy41 > t, and equivalently {X T, X~ U {zn;1}} is homogeneously separable if and only if
Jw € W so that w - zny1 < t Let the sets be linearly separable with w; and we, respectively. Then
w* = (—wg + Tx11)wy + (w1 - Ty1)wo separates {X T, X~} by the hyperplane {z : w* - £ = t} passing
through z 1. Conversely, if the sets { X+, X~} are homogeneously linearly separable by a hyperplane
containing 41, then Jw* € W so that w* -z = t. Since W is an open set, Je > 0 so that w * +exni1
and w * —exn41 are in W. Hence {X T U {zy41},X } and {XT, X~ U{zny41}} are homogeneously
linearly separable by w * +exn4+1 and w * —ex 1, respectively.

So the set can be separated if and only if Jw so that the projection onto a (d — 1) dimensional subspace
is separable. By the induction hypothesis there are C(N,d — 1) such separable dichotomies. Hence,

C(N +1,d) = C(N,d) + C(N,d — 1)

By repeatedly applying of this to the terms on the right we obtain

N-1

C(N,d)=>" (Nk_ 1)0(1,d—k)

k=0

Now, as it is obvious that one point can be separated in two ways if the dimension is greater or equal
to 1 and no separation can be made when the dimension is below one, or

2,m>1
O0om<1

C(l,m) = {

The original theorem follows by separating the part of the sum whered —k <1<k >d—1:

cona =15 (" )0 5 (V) <15 (M) o -2 (7))

k=d



3. The SVM optimal hyperplane separates the space so that

waZ- 4wy > 41, if z; € wy

wT:cZ- 4wy < —1, if z; € wy

Let w; be on the positive side of the optimal hyperplane and wy on the negative side, and d; and d_
be the distances from the optimal hyperplane and the nearest point in classes w1 and we, respectively.
Let g(z) = w'z; + wy be the distance from the optimal hyperplane w. It can also be stated that
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where z), is the projection of = onto the optimal hyperplane and r is the distance from the hyperplane.
Since g(zp) = 0 by definition (the point z, lies on the optimal hyperplane),
g(z)

g(z) = wl'e 4wy = r||w|| e r= W
w

Thus the algebraic distance for the support vectors is

_ .
r=-—=>- =
|w| —m = d_, when z is the nearest point of wo

g(x) {L = d4, when z is the nearest point of w;

Here the negative sign denotes being on the negative side of the hyperplane. Thus the distance between

the two points is ﬁ



