T-61.231 Principles of Pattern Recognition

Answers to exercise 1: 1.10.2001

2. Principal Component Analysis (PCA) produces principal components orthogonal to each other. The
principal component transformation is closely related to the Karhunen-Loévé and Hotelling transforms,
all of which employ the same base idea of eigenvector use to create a linear transform.

First, let  be a population of random vectors. Let m, = FE(z) be the mean of the random vector
population. Again, the covariance matrix of z is defined as Cp = E(z — mgz)(z — mz)?. Because Cy
is real and symmetric, it is always possible to find a set of n orthonormal eigenvectors, and it can be
stated that

C, = ATAA

Where A is the matrix whose rows are formed from the eigenvectors of C, and A is a diagonal matrix
with the corresponding eigenvalues. Taking A as the transformation matrix, the transformation can be
written as

y = A(x — my)

Resulting from this transformation, the mean of the y vectors is zero and the covariance matrix of the
y’s can be written as

Cy = AC, AT = AATAAAT = A

ie. the covariance matrix of y is a diagonal matrix consisting of the eigenvalues of the original covariance
matrix C. Thus, as long as none of the eigenvalues are zero (which would indicate that one component
had full correlation with some other and contained no additional data), the variance of the y’s can easily
be scaled to 1. In some cases this is taken a bit further by also decomposing the eigenvalue-matrix A
and joining it into the transformation matrix A by setting

Cp = ANAT = ANYV2T TAV2AT = A* AT
When using the transformation matrix A*, it is obvious that the variance of y is I (a diagonal matrix

consisting of ones).

By ordering the eigenvectors and values so that the first row of A corresponds to the largest eigenvalue
and the last row to the smallest eigenvalue, or in order of decreasing variance after the transform, the
transformation can reduce the amount of needed data. By taking the first m principal components to
create A,, for the data projection, a transformation of the form

g~ Ap(z —my)

This projection is optimal in the sense that it minimizes the mean square error (MSE) for any approxi-
mation with m components. The MSE becomes, for an initially K dimensional set of data,

K
Efllz — &) = Y X

Example from Digital Image Processing, Gonzales & Woods, Addison-Wesley 1993; When performing
the transformation on data obtained from a six-band multi-spectral scanner, the eigenvalues of the
covariance matrixes were calculated. The resulting ordered eigenvalues were



>\1 )\2 )\3 )\4 )\5 )\6
Eigenvalue 3210 9314 118.5 83.88 64.00 13.40
Percentage of total 72.61 21.07 2.68 1.9 1.45 0.3

3. The ambiguity function can be of great use in feature selection, especially in a multi-class situation.
The estimation of the required probability functions is in general easy.

A ZZP P(wi|Aj) log, (P(wi]A;))

Completely overlapping distributions: P(w;|A;) is constant, P(w;|A;) = ﬁw. Thus

A==% Z;(J P(Aj)P(wil Aj) log (P (wil Aj))
=-M Zj:l P(Aj)ﬁ IOQM(ﬁ)

= ZK:1 P(Aj)(logy 1 —logy, M)
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= Z]K:1 P(4;)
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Completely separate distributions: P(w;|A;) = 1 = P(wg|Aj) = 0 Vk # 4. Thus for all other distribu-
tions at each point the term P(A;)P(w;|A;)logy (P(w;]Aj)) =0, and

=220 225 P(Aj) Pwil Aj) log s (P(wil Aj))
—0+ Z] 1 P(Aj) - 1-log(1)
——Z] 1 P(4) -0

And for those concerned with the expression P(A;)P(w;|Aj)log (P(w;i|Aj)) = P(A;)0-log,(0) =0,
it is a commonly accepted convention (see, for example, definitions of Entropy in books that ca-
re to define entropy “properly” also for zero probabilities - which is surprisingly often not the case,
but for example ftp://wol.ra.phy.cam.ac.uk/pub/mackay/info-theory/l1.pdf ) that 0 -log,(0) = 0, since
lim,_,o+ z logg () = 0 for all k.

4. The motivation for this to prove that variance for the estimated classification error can be calculated
using formula 10.7 (Theodorodis p.339, Error Counting Approach). A help in solving this exercise is
provided by knowledge of the binomial formula,

n
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The expectation value can be written as
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Since the variance can be stated as var[k] = E[k?] — E[k]?, we need to calculate E[k?].

E[k?] = Zk 0( )kzpk( — P)yNk
= Yko A g R P — PV
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And thus
var[k] = E[k*] — E[k]?
= P?N? — P2N + PN — P?N?
— NP(1 - P)



