Tik-61.231 Principles of Pattern Recognition
Answers to exercise 7: 13.11.2000

1. y = f(o) = f(Oo; wiz; — 0) is the actual output of the perceptron and d is the desired output.
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The squared error E = (y — d)? is minimized using the gradient descent method. The gradient descent

method moves the parameter vector w! = (wy,ws, ... ,w,,0) to the opposite direction of the gradient
VwE = (2£ 9By,
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According to the chain rule Bw. = By Do Du;-

Now we have 3E =2(y —d), & =1—y? (since dtagg}:(z) =1 — tanh(z)?) and 86_12 = ;.

Thus we can write Aw; = f(y,d)z;, where f(y,d) = —n(y — d)(1 — y?).

2. With a hidden layer and an output layer

2
o = Zwklwk — 01, y1 = f(o) (hidden layer)

2
O, = ZWz’jyi — 0y, Y; = f(O;) (output layer)
=1

The back-propagation algorithm updates the parameters by minimizing the squared error E = ||Y —D|[?
using the gradient descent method. Y is the output of the network and D is the desired output.

E=|Y-D|? Z Z(f(oj) - D))’ = Z(f(z Wijyi — ©;) — Dj)?



dlogsi . .
1+i—w’ S0 Og;;g(m) = logsig(z)(1 — logsig(x)).

For the output neurons, with the chain rule,
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Now we have the logsig function f(z) =

Here aE =2(Y; — Dy), % =Y;(1 -Y;) (derivative of logsig)
5 = - D1,
Thus

aW = y;. Also ggj = —1. Now let

SE==2(Y; — D)Y;(1 - Y))5i=20)";
95— 2(Y; - D)¥;(1 ~ Vy)=-20

And the update rules become, with the learning parameter 7,
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And for the hidden layer neurons, again using the chain rule,
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. The cross-entropy function to be optimized is J = ZZ 1 Zk 1 Yk(i)1 (yzgg) and the activation
function is the sigmoid f(x) = m. The gradient 6% (i) can be calculated from the energy
function, and since
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4. The cross-entropy function to be optimized is J = —Zfil Zﬁil yk(z)ln(Z:gg) Using the softmax
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Note: the result 5JL(u) = 9;(i) — y;(i) shown in the books assignment (Theodorodis 4.7, p. 130) and
also in the original exercise paper would appear to be incorrect and is probably just an error in the
book.

5. The behavior of the function can easily be seen, as
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1+%_“°to+t

M= Mo

It is rather obvious, that when ¢t << tg u ~ %NO = pg- For example, if tg =400 and t = 1, p = 0.998ug.

Also, when t >> g, u = % o which is inversely proportional to 2.

The behavior in both situations has been illustrated in the figures below.

mug =1, 1= 10000....40000, t, = 400

mu,=1,t=0,..10, t, = 400
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