Tik-61.231 Principles of Pattern Recognition
Answers to exercise 5: 23.10.2000

1. Let’s denote the function slightly differently for the proof; let d =1 — 1 and O(N, 1) = C(N,d), where

CW“®:2§;(N;1>

In my opinion this is more illustrative, as we are actually using the dimension of the space d instead
of constantly using [ to denote [ — 1 dimensional space. C(N,d) tells us the number of groupings that
can be formed by d-dimensional hyperplanes to separate the IV points into two classes.

First we need to prove that C(N + 1,d) = C(N,d) + C(N,d —1).

Let C(N,d) be a separable set of dichotomies X. Let’s take a new point zy; so that X U{zn41}
is in the general position (well distributed). Let there be a vector w that divides X into two sets
X={X",X"}sothatw-z>t=>z€ X" andw- -z <t= 2z € X, where t is a scalar.

If {X*, X~} is separable, must also either {X+ U{zny1},X "} or {X T, X~ U{zny1}} be separable.
However, they both are separable if and only if 3w that is a vector that separates {X+, X~} ina (d—1)
dimensional space and is orthogonal to Ty 1

To prove the prior statement regarding w, let the set ova separating vectors W = {w : w-z > t,z €
XT;w-z <t,x € X }. Theset {XtU{zn+1},X } is homogeneously separable if and only if Jw € W
so that w - zy41 > t, and equivalently {X T, X~ U {zn;1}} is homogeneously separable if and only if
Jw € W so that w - xny41 < t Let the sets be linearly separable with w; and ws, respectively. Then
w* = (—wy - xn41)wy + (w1 - Ty41)we separates {X+, X~} by the hyperplane {z : w* - z = t} passing
through zy 1. Conversely, if the sets { X+, X~} are homogeneously linearly separable by a hyperplane
containing 41, then Jw* € W so that w* -z = t. Since W is an open set, de > 0 so that w* +exyi1
and w * —exn41 are in W. Hence {X T U{zn41},X "} and {X*, X~ U {zn41}} are homogeneously
linearly separable by w * +€xn41 and w * —ex 1, respectively.

So the set can be separated if and only if Jw so that the projection onto a (d — 1) dimensional subspace
is separable. By the induction hypothesis there are C(N,d — 1) such separable dichotomies. Hence,

C(N +1,d) = C(N,d) + C(N,d — 1)

By repeatedly applying of this to the terms on the right we obtain

N-1

C(N,d) =) <Nk_ 1)0(1,d—k)

k=0
Now, as it is obvious that one point can be separated in two ways if the dimension is greater or equal

to 1 and no separation can be made when the dimension is below one, or

2,m>1
O0om<1

C(1,m) = {
The original theorem follows by separating the part of the sum whered —k <1<k >d—1:
N-1

O(N.d) :2:2:;1)(1\7;1) +0-5° (Nk—1> :2:2_:_:)(1\[1;1) @o(n,l)=2kzl:_o(Nk—1>

k=d



2. The SVM optimal hyperplane separates the space so that

wle; + wy > +1, if ; € wy
wT:cZ- 4wy < —1, if z; € wy
Let w; be on the positive side of the optimal hyperplane and wy on the negative side, and dy and d_

be the distances from the optimal hyperplane and the nearest point in classes w; and ws, respectively.
Let g(z) = wl'z; + wy be the distance from the optimal hyperplane w. It can also be stated that

w
T =Tp + ’I"m

where z, is the projection of x onto the optimal hyperplane and r is the distance from the hyperplane.
Since g(zp) = 0 by definition (the point z, lies on the optimal hyperplane),

g(z)

g(z) = wl'e +wy = r||w|| & r =71

jwl]

Thus the algebraic distance for the support vectors is

po 9@ T

wli

Here the negative sign denotes being on the negative side of the hyperplane. Thus the distance between
the two points is ﬁ

g(x) {L = d4, when z is the nearest point of w;

Tal] = = d_, when z is the nearest point of wo

3. The main idea behind finding the optimal SVM decision hyperplane is to maximize the marginal Tl

\wH
In the basic, separable case this is done through taking positive (because of the form ... > 0) Lagrange
multipliers «;,2 = 1,... ,l, where [ is the number of points, for each inequity
yi(w i +wo) —1>0
where y; denotes class membership, y; = 1 if z; € wy; and y; = —1 if 2; € wy. Thus the objective

function to minimize is

2
w
Lp | H Za,yzw z; + wo) —i—Za,

The objective is to minimize Lp with respect to w and wg and simultaneously require that the de-
rivatives of Lp with respect to all ; vanish, all subject to the constraints «; > 0. This is a convex
quadratic programming problem, since both the objective function is convex and the points satisfying
the constraints form a convex set. This means that it is equivalently possible to solve the dual problem,
maximize Lp subject to the constraints that the gradient of Lp with respect to w and wgy vanish and
again all a; > 0. Requiring the gradient of Lp to vanish with respect to w and wy gives the additional
constraints:

6L
it —w—Zazyzxz—Oiw—Zazyzxz

6Lp
F _Zaiyi =0= Zaz‘yz' =0
7 (3
By substituting these conditions into the equation for Lp we obtain

Lp= %(ZZZ aiyiri)? + — (3 ayizi)> —0x b+ Y, o
Dliot 0 = 5 Dy COGYiY T - T



Both formulations produce the same result. The latter formulation is called the Wolfe dual.

For the non-separable case the basic algorithm provides no feasible solution as the objective function
grows arbitrarily large. In order to handle the non-separable case an additional cost must be introduced
to loosen the original constraints when necessary. This can be done by introducing positive slack
variables & > 0,7 = 1,...,[ into the constraints, which then become

wTa:i+w021—§i, if z € wp
wT:vi—l—woS —1-&,if z € wo

Thus for an error to occur & > 1, so ), & is an upper bound for training errors. The costs can be

2
added to the objective function so that the objective function becomes @ + C(32; &)k, where C is
a cost parameter to be freely chosen (larger C' is equivalent to a larger cost for making a mistake). It
can be seen that when £ =1 Lp becomes

2
w
b= G0 S 6~ Yaluten ot ~1 46 - S
7 2

In this case neither &; nor their Lagrange multipliers u; appear in the Wolfe dual Lp, which can be
seen by requiring the gradient of Lp to vanish with respect to w, wg and all &;:

6L
tid —w—Zazy,xz—O

oL
- > ayi =0
i

By substituting these into the equation for Lp we get the Wolfe dual for the non-separable case
Lp = 53 aiize)® + X (i + po)éi — (X; cayezi)? — 0% b+ Y, i — Yoy iy — 2o, ik
—3 (0 i) + 2,

2~ 3 Zi,j Qi QY YT - Ty

So the problem is to maximize Lp subject to the constraints 0 < a; < C and ), a;y; = 0, and
w = vazsl o;Y;x;, where Ny is the amount of support vectors. As we can see, the form of Lp is actually
identical to that of the separable case. The only difference is in the costraints.

So, in the situation where we have the points z; = [1 1]7 € wy, 20 = [2 1]7 € wo, 23 = [3 2]T € wy
and 74 = [2 3]7 € wy, the dual problem Lp can be written as

Lp = Y04 — 52 GiQyyiy;Ti - T
= oa1t+ay+azt+ag— %(204% + 704% + 1304% + 13042 — 6aiag + 10a; a3
—10a; 4 — 1oy + 14aoad — 230&30[4)

and the constraints as

ar—ar+az3—ag =0
0<y<C Vi

where C' is the cost parameter to be chosen.



