
Transformations for variational factor analysis to speed up learning

Jaakko Luttinen∗, Alexander Ilin

Department of Information and Computer Science, Helsinki University of Technology TKK, P.O. Box 5400, FI-02015 TKK, Finland

Abstract

We propose simple transformation of the hidden states in variational Bayesian factor analysis models to speed up the learning pro-
cedure. The speed-up is achieved by using proper parameterization of the posterior approximation which allows joint optimization
of its individual factors, thus the transformation is theoretically justified. We derive the transformation formulae for variational
Bayesian factor analysis and show experimentally that it can significantly improve the rate of convergence. The proposed trans-
formation basically performs centering and whitening of the hidden factors taking into account the posterior uncertainties. Similar
transformations can be applied to other variational Bayesian factor analysis models as well.
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1. Introduction

Probabilistic latent variable models is a powerful tool of un-
supervised data analysis which can efficiently be used for data
compression, feature extraction and dynamical modeling. In
this article, we consider a latent variable model calledfactor
analysis[3, 4], in which observed data vectorsyn are assumed
to be constructed from variablesxn using a linear mapping:

yn =Wxn + µ + ǫn , n = 1, . . . ,N , (1)

where matrixW and vectorµ are adaptive parameters andǫn is
a noise term. The latent latent variables{xn} are modelled to be
zero-mean Gaussian with uncorrelated and unit-variance com-
ponents, while the noise termǫn is also a zero-mean Gaussian
with a diagonal covariance matrix.

Factor analysis (FA) can be seen as a basic latent variable
model which has been extended in many ways. Probabilistic
principal component analysis (PCA) [24] is a FA model with
isotropic noiseǫn [6]. Linear state-space models (see, e.g., [11])
use the linear generative model (1) but include dynamics into
the prior model for the latent variables. Mixtures of factorana-
lyzers allow different local FA models in different regions of the
input space [10]. Non-Gaussian factors yield a noisy indepen-
dent component analysis model [2]. A nonlinear mapping from
the hidden factorsxn to observationsyn is assumed in nonlin-
ear factor analysis models [12, 15, 16], exponential familyPCA
[21] or nonlinear state-space models [25].

Bayesian methods provide a principled way for learning la-
tent variable models. The main advantages of Bayesian tech-
niques include easy handling of missing data, resistance toover-
fitting and natural ways of model comparison. In Bayesian in-
ference, both the adaptive parameters, includingW andµ, and
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the latent variables{xn} are assigned priors which express our
modeling assumptions. Then, the goal is to evaluate the joint
distribution over all the unknown variables given the observa-
tions{yn}.

Variational Bayesian (VB) methods have been widely used
in FA and its extensions (see, e.g., [5, 8, 15]). Perhaps the main
argument for using VB methods is a typically large number of
unknown parameters in latent variable models, which can make
sampling methods computationally prohibitive. VB meth-
ods approximate the true posterior probability density function
(pdf) p ({xn},µ,W,α, ...|{yn}) of the unknown variables using a
simpler pdf which is factorized with respect to groups of vari-
ables (see, e.g., [7]).

The variational approximation usually assumes that the hid-
den factors{xn} and the rows of the loading matrixW are inpen-
dent a posteriori, which is done mainly for computational con-
venience. However, all the variables in the original FA model
are strongly coupled. This often causes slow convergence of
VB methods in practice.

Parameter-expanded VB (PX-VB) methods were proposed
recently to address the slow convergence problem [23]. The
general idea is to use auxiliary parameters in the original model
to reduce the effect of strong couplings between different vari-
ables. The auxiliary parameters are optimized during learning,
which corresponds tojoint optimization of different compo-
nents of the variational approximation of the true posterior. In
this way strong functional couplings between the components
are reduced, which facilitates faster convergence. One of the
main challenges for applying the PX-VB methodology is to use
proper reparameterization of the original model.

In this paper, we present a very similar idea in the context
of learning VB factor analysis (VBFA) models. Similarly to
PX-VB, we propose to use auxiliary variables which are op-
timized in conjunction with the variational approximation. In
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our presentation, the auxiliary variables reparameterizethe ap-
proximating posterior pdf rather than the original model. Thus,
the adaptation of the auxiliary variables corresponds to trans-
formations of the latent variables in our terminology rather than
to reparameterization of the original model in the PX-VB ter-
minology. Similarly to examples of PX-VB [23], our proposed
family of possible transformations may look ad-hoc but we pro-
vide a rigorous proof that the optimal transformation (within
the proposed family) always maximizes the lower bound of the
marginal likelihood. Thus, the propsed transformations facili-
tate faster convergence.

In the experimental part, we consider the VB PCA model [8]
and show that the proposed methodology can lead to signifi-
cantly faster convergence. The preliminary results of thiswork
were presented in our conference paper [20].

2. Transformations for variational Bayesian factor analysis

2.1. Learning VBFA model by variational EM algorithm

Let us denote by{yn}
N
n=1 a set ofM-dimensional observa-

tions yn. The data are assumed to be generated from hidden
D-dimensional states{xn}

N
n=1:

p(Y|W,X,µ,τ) =
N∏

n=1

N
(
yn|Wxn + µ, diag(τ)−1

)
, (2)

whereN (a|b,C) denotes a Gaussian probability density func-
tion overa with meanb and covariance matrixC, W is anM×D
loading matrix,µ is a bias term and diag(τ) is a diagonal preci-
sion matrix with elementsτm on the diagonal.

The prior models for the unknown variables are

p(X) =
N∏

n=1

D∏

d=1

N(xdn|0, 1), p(µ) =
M∏

m=1

N(µm|0, β
−1),

p(W|α) =
M∏

m=1

D∏

d=1

N(wmd|0, α−1
d ), p(α) =

D∏

d=1

G(αd|aα, bα),

p(τ) =
M∏

m=1

G(τm|aτ, bτ),

whereG(χ|a, b) is a Gamma density function which has the ex-
pectations〈χ〉 = a/b and

〈
logχ
〉
= ψ(a) − log(b), with ψ(a)

being the digamma function, and the hyperparametersβ, aα,
bα, aτ, andbτ are fixed to small values (e.g., 10−5) resulting in
broad priors.

In VBFA, the joint posterior probability density function
(pdf) of the unknown variablesΘ = {X,µ,W,α,τ} is ap-
proximated with a suitable pdfq(Θ). The approximate pdf
is often chosen to factorize with respect to the variables as
q(Θ) = q(X)q(µ)q(W)q(α)q(τ). The approximate distribution
q(Θ) is found by maximizing the lower bound of the marginal
log-likelihood

log p(Y) ≥ L(q) =
∫

q(Θ) log
p(Y,Θ)
q(Θ)

dΘ

=
〈
log p(Y|Θ)

〉
−

〈
log

q(Θ)
p(Θ)

〉
, (3)

where〈·〉 denotes the expectation over theq distribution. This
optimization results in the following forms for the factors[8]:

q(X) =
N∏

n=1

N(xn|xn,Σxn), q(µ) =
M∏

m=1

N(µm|µm, µ̃m), (4)

q(W) =
M∏

m=1

N(wm|wm,Σwm), q(α) =
D∏

d=1

G(αd|ăαd , b̆αd), (5)

q(τ) =
M∏

m=1

G(τm|ăτm, b̆τm), (6)

wherewT
m is them-th row of W. In the variational EM algo-

rithm, the optimization is done by alternate updates of the in-
dividual factors in (4)-(6) while keeping the rest of the factors
fixed. The update rules for the parameters are as follows:

Σ
−1
xn
= I +

∑

m∈Omn

〈τm〉
〈
wmwT

m

〉
,

xn = Σxn

∑

m∈Omn

〈τm〉〈wm〉(ymn− 〈µm〉),

Σ
−1
wm
= diag〈α〉 + 〈τm〉

∑

n∈Omn

〈
xnxT

n

〉
,

wm = Σwm〈τm〉
∑

n∈Omn

〈xn〉(ymn− 〈µm〉),

µ̃−1
m = β + Nm〈τm〉,

µm = µ̃m〈τm〉
∑

n∈Omn

(
ymn− 〈wm〉

T〈xn〉
)
,

ăαd = aα +
1
2

M,

b̆αd = bα +
1
2

M∑

m=1

〈
w2

md

〉
,

ăτm = aτ +
1
2

Nm,

b̆τm = bτ +
1
2

∑

n∈Omn

〈(
ymn− wT

mxn − µm

)2〉
,

whereOmn is the set of indeces (m, n) for which the correspond-
ing ymn is not missing, andNm is the number of non-missing
observations in them-th row ofY.

2.2. Transformations of the posterior distributions

The two terms ofL(q) in (3) suggest that the optimal approx-
imation q(Θ) should provide good explanation of data, which
is expressed in the likelihood term

〈
log p(Y|Θ)

〉
. It should also

reflect our prior model because the second term is simply the
negative of the Kullback-Leibler divergence between the prior
distribution and the posterior approximation.

However, the maximization ofL(q) can be quite slow be-
cause discarding posterior correlations between many variables
in the posterior approximation often leads to zigzagging ofthe
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update trajectories in the parameter space. This effect can be
reduced by transformations of the model parameters, as we pro-
pose in the following. Such transformations can be performed
after each iteration step of the EM learning algorithm or less
frequently.

The additional computational cost is rather small because the
transformations are performed in the lower-dimensional sub-
space ofxn. One cycle of the VB updates has a computational
cost ofO(DNM) without missing values andO(D2NM) in the
presence of missing values, but the presented transformations
do not even exceedO(D2N + D2M) although they speed up the
convergence significantly.

2.2.1. Removing the bias fromX
We note that one can move a constant bias term betweenX

andµ as in

yn =Wxn + µ =W(xn − b) + (Wb + µ) =Wxn∗ + µ∗ , (7)

whereb is aD × 1 bias vector. This motivates a transformation
of the approximating posterior pdfs to

q∗(X) =
N∏

n=1

N(xn|xn − b,Σxn),

q∗(µ) =
M∏

m=1

N(µm|µm+ wT
mb, µ̃m),

where the biasb parameterizes the transformed distributions.
Note that the original distributions are recovered by setting b =
0.

The lower bound (3) to be maximized with respect tob be-
comes

〈
log p(Y|Θ)

〉
∗ −

〈
log

q∗(X)
p(X)

〉

∗

−

〈
log

q∗(µ)
p(µ)

〉

∗

+ const, (8)

where the expectation is taken over the transformedq∗ distribu-
tions and the constant term represents the terms independent of
b.

As we show in the Appendix A, the bias termb that maxi-
mizes (8) can be reasonably approximated by

b ≈
1
N

N∑

n=1

xn .

Thus, the expected mean of the latent variablesxn should be
transformed to zero. In our experiments, we use this approxi-
mate translation. However, if a very large portion of the data
Y is missing, one may obtain better performace with the exact
formulae (18) as discussed in the Appendix A.

2.2.2. Rotation of the latent subspace
Similarly, one can rotate the latent variablesX with a proper

rotation of the loading matrixW such that the likelihood term〈
log p(Y|Θ)

〉
remains constant:

yn =Wxn + µ = (WR)(R−1xn) + µ =W∗xn∗ + µ .

This yields the transformed distributions parameterized with the
D × D rotation matrixR:

q∗(W) =
M∏

m=1

N(wm|RTwm,RT
ΣwmR) ,

q∗(X) =
N∏

n=1

N(xn|R−1xn,R−1
ΣxnR−T) ,

q∗(α) =
D∏

d=1

G(αd|aα +
1
2

M, bα +
1
2

rT
d

〈
WTW

〉
rd) ,

whererd is thed-th column ofR. The transformed distribu-
tion q∗(α) is motivated by the update rule ofq(α). Again, the
original distributions can be recovered by settingR = I.

The lower bound (3) to be maximized can be written as a
function ofR as

−

〈
log

q∗(X)
p(X)

〉

∗

−

〈
log

q∗(W)
p(W|α)

〉

∗

−

〈
log

q∗(α)
p(α)

〉

∗

+ const, (9)

where the expectations are taken over the transformedq∗ distri-
butions. The constant term represents the terms independent of
the rotation parameterR.

As we show in Appendix B, the transformation matrixR
which maximizes (9) can be found from the requirements

1
N

〈
XXT
〉
∗
= I (10)

〈
WTW

〉
∗
= diagonal matrix. (11)

The resulting rotation matrix is formed asR = UΛV with or-
thogonal matrixU and diagonal matrixΛ found from the eigen-
decomposition

UΛ2UT =
1
N

〈
XXT
〉

(12)

and V is an orthogonal matrix computed from the eigen-
decomposition

ΛUT
〈
WTW

〉
UΛ = VDVT . (13)

Thus, the transformation basically whitens the hidden statesxn

and orthogonalizes the columns of the loading matrixW while
taking into account the posterior uncertainties.

2.2.3. Relation to parameter expanded VB
Our speed-up methodology is closely related to the general

framework of parameter expanded variational Bayesian (PX-
VB) methods [23], which are similar to the parameter expan-
sions for MCMC [18, 26] and EM algorithm [17]. The main
difference is that we use proper parameterization of the approx-
imate posterior distributionq(Θ) in order to optimize jointly
the individual factors of the variational approximation. In con-
trast, in PX-VB one parameterizes the prior distributions and
the likelihood function with the auxiliary variables whichare
then optimized to decrease the VB cost function.

Despite the differences, our methodology and PX-VB lead
to the same transformations. The bias removal can be seen as
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augmenting the model with auxiliary variableb by exchanging
the original variables as

xn = xn∗ − b,

µ = µ∗ + 〈W〉b,

resulting in a new prior and likelihood

p(X∗|b) =
N∏

n=1

N (xn∗|b, I) ,

p(µ∗|b) = N
(
µ∗

∣∣∣−〈W〉b, β−1I
)
,

p(Y|Θ) =
∏

(m,n)∈Omn

N

(
ymn

∣∣∣∣wT
m(xn∗ − b) + µ∗ +

〈
wT

m

〉
b, diag(τ)−1

)
.

First, the approximate posteriorq(W,X∗,µ∗, τ,α) is eval-
uated with the original model (i.e.,b = 0). Next,
KL(q(W,X∗,µ∗, τ,α)‖p(Y,W,X∗,µ∗, τ,α, b)) is minimized
with respect to the auxiliary variableb. It can be shown that
this cost function is actually identical to (8), thus resulting in
the same optimal translation.

Similar relation holds for the rotational transformation as the
rotation can be interpreted as augmenting the model with an
auxiliary variableR by exchanging the original variables as

W =W∗R,

X = R−1X∗,

α−1
d = rT

d diag(α∗)−1rd.

Updating the prior and the likelihood appropriately, the mini-
mization of KL(q(W∗,X∗,µ, τ,α∗) ‖p(Y,W∗,X∗,µ, τ,α∗,R) )
with respect toR is identical to the maximization of (9).

The difference between PX-VB and our methodology is in
the viewpoint rather than in the resulting transformations. The
transformations to the posterior distribution can be seen as a
model augmentation. However, we suggest that it can be more
convenient to parameterize the approximate posterior distribu-
tion directly rather than indirectly through the prior and the like-
lihood. In some cases, it might be difficult to see what model
augmentation corresponds to a particular parameterization. In-
stead of auxiliary variables, the transformations can be inter-
preted as parameterized joint optimization of multiple factors in
q(Θ). For instance, the speeding up of VB with pattern searches
can be seen as one special case of doing parameterized joint op-
timization [13].

3. The PCA solution for probabilistic PCA models

The results reported in the previous section suggest that the
solution found by VBPCA always satisfies the requirements
that the principal components are zero-mean and mutually un-
correlated and the loading matrixW has mutually orthogonal
columns:

1
N

N∑

n=1

xn∗ = 0 (14)

1
N

〈
XXT
〉
= I (15)

〈
WTW

〉
= diag(s) (16)

sk ≥ sl , k < l , (17)

where diag(s) denotes a diagonal matrix with diagonal elements
sk. Here, we ordered the columns of the loading matrixW ac-
cording to their expected norms in order to remove the remain-
ing ambiguity.

Thus, the VBPCA solution allows intuitive interpretation
similar to standard PCA: The principal components are ordered
according to the amount of data variance they explain, whichis
estimated using the computed posterior approximations. Inthis
case, the normalized columns ofW and their squared normssk

play the role of the eigenvectors and eigenvalues of classical
PCA.

Similarly to this, we can define the PCA basis for related
probabilistic models which converge to some basis in the prin-
cipal subspace and therefore have rotational ambiguity. For ex-
ample, it is easy to show (see Appendix C) that the solution
provided by probabilistic PCA [24] always satisfies at least(14)
and (15). We can use the additional requirements (16)-(17) in
order to define a practically unique solution. Again, this solu-
tion allows interpretation similar to standard PCA.

One can performexplicitly a transformation of the solution
provided by [24] such that the requirements (14)–(17) are ful-
filed. The only difference to the transformations discussed in
the previous section would be using point-estimatedW, which
yields, for example,WTW instead of

〈
WTW

〉
in (13). Perform-

ing such a transformation can also speed up learning, which is
motivated by the variational view of the EM-algorithm, as we
discuss in Appendix C.

Similar transformations to the PCA basis are straightforward
for principal subspace methods which compute point estimates
for parameters{W, xn,µ} of model (1) and which use the only
assumption that the noise termǫn is Gaussian with fixed vari-
ance. One simply needs to replace

〈
XXT
〉

and
〈
WTW

〉
with

point estimatesXXT andWTW in (12) and (13).
The formulation of the PCA solution in terms of (14)–(17)

allows to extend the idea of the PCA basis to the case when
data vectorsyn have missing values. There is an important dif-
ference, though: Thec-dimensional PCA basis found for com-
plete data has the property that the firstk < c columns ofW
always correspond to thek-dimensional PCA solution. This
property does not generally hold for incomplete data: The prin-
cipal subspace estimated with the same algorithm using fewer
components may differ from the leading directions of the PCA
basis found in the subspace with more components.

4. Experiments

4.1. Artificial data

In this section, we use an artificial experiment to illustrate
the effect of the transformations on the speed of convergence of
VBPCA. We generated three different datasets withN = 200
data points from the multivariate Gaussian distribution with
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Figure 1: The square roots of the eigenvalues of the covariance
matrices which were used to generate the three datasets.

M = 50 dimensions with the means drawn from a Gaussian
distribution with zero mean and unit variance. The covariance
matrix for the first dataset contained ten eigenvalues of 52 and
the rest of the eigenvalues equaled unity (see Fig. 1). The co-
variance matrix for the second dataset had ten larger eigenval-
ues 22, . . . , 112 and the remaining eigenvalues equaled unity.
The third covariance matrix had eigenvalues 12, . . . , 502 thus
having no prominent low-dimensional subspace. 20% of the
values were removed from the datasets. Those data points were
used for validation of trained models in the problem of missing
value reconstruction.

The VBPCA model was trained using the variational EM al-
gorithm presented in [8]. We ran the experiments for two vari-
ants of the prior forW: 1) the hierarchical prior explained in
Section 2 and 2) the broad prior which was achieved by fix-
ing hyperparametersαd to small values.1 For each dataset, we
learned the model with all possible dimensionalities for the la-
tent subspace, ranging inD = 1, . . . , 50. We measured the
running time until convergence, which was the point when the
relative relative difference to the converged value of the log-
likelihood lower bound was less than 10−3.

In all experiments, we initialized the hyperparameterτ defin-
ing the inverse variance of the noise in (2) to a large value. This
was done to avoid underfitting when the noise variance is es-
timated to be too large and many components are estimated to
have zero variance.

Fig. 2 shows the results for the three datasets and for ten ex-
periments with and without applying the proposed transforma-
tions after each iteration of the variational EM-algorithm. For
the first two datasets, the convergenceof the algorithm whenthe
transformations were used was approximately ten times faster
depending on the dimensionality of the latent subspace. How-
ever, the transformations had small or almost no effect in the
third experiment when the data had no prominent latent sub-
space. We also see that the transformations become more im-
portant for models with a larger number of latent components.

We also observed a greater significance of the transforma-
tions for higher-dimensional datasets. For 200-dimensional
Gaussian data, the convergence with the transformations was
1000 times faster than without them. In that experiment, the
covariance matrix had eigenvalues 212, 202, . . . , 22, 1, 1, . . . , 1,
the number of samples wasN = 2000 and the number of esti-
mated components wasD = 50.

1The optimal transformation in case of broad priors is somewhat different
from the one presented in Section 2, as we explain in Section 5.
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Figure 2: Convergence time for three different artificial datasets
using hierarchichal prior (left) and fixed broad prior (right) for
W. Thex-axis corresponds to different number of latent com-
ponents. The black dotted curve with the shaded area and the
three solid red curves show the worst, the best and the median
convergence times out of ten experiments with and without the
transformations respectively.

More detailed analysis of the results suggests that perform-
ing the transformation can reduce the overfitting effect during
learning. Fig. 3 shows the VB cost (i.e., the negative of (3))and
the root mean squared error (RMSE) (

∑
mn(ymn−wT

mxn−µm)2)
1
2

for the training set during the learning. RMSE is estimated to
be too small at the beginning and it is later increased to recover
from an overfitted solution in order to decrease the RMSE for
the test set in Fig. 3c. This overfitting effect is smaller when
the proposed transformations are used. For both hierarchical
and broad priors, the convergence was 10–100 faster with the
transformations.

When the noise variance was initialized to be large, that is,
a small value was used forτ in (2), the improvement of con-
vergence obtained using the transformations can be mild. How-
ever, in our experiments, this type of initialization typically led
to slower convergence compared to the initialization with small
noise variance. Also, the risk of converging to a bad local opti-
mum was increased: Initialization with large variance of obser-
vation noise may lead to pruning out some of the components.
In this case, using the transformations may speed up the pruning
process, which can be a negative effect. Therefore, initialization
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Figure 3: Experimental results obtained for an artificial dataset
when using hierarchichal prior (left) or fixed broad prior (right)
for W. The dotted and solid curves represent the results with
and without the transformations respectively. The VB cost is
minus lower bound of the log marginal likelihood (3), that is,
the VB cost is minimized during learning.

of noise variance with small values seems to be a more robust
approach. Although it is possible to converge to a poorer local
optimum with the transformations, this happened very rarely in
our experiments. If this appears to be a problem, it is possible to
start using the transformations after a few cyclic updates have
been completed.

4.2. Real-world data

We also tested the effect of the transformations on two real-
world datasets. The first dataset consisted of images of hand-
written digits, extracted from the MNIST database2. We chose
N = 100 images of digit 5 as the training data. Images are
in grayscale and have a size of 28× 28 pixels, resulting in
dimensionalityM = 784. The second dataset consisted of
movie ratings from a set of users extracted from the MovieLens
database3. We used the smallest dataset, which had 100,000
ratings forN = 1682 movies byM = 943 users, resulting in an
extremely sparse matrix.

2Available online at http://yann.lecun.com/exdb/mnist/.
3Available online at http://www.grouplens.org/node/73.
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Figure 4: Experimental results obtained for MNIST (left) and
MovieLens (right) datasets. The dotted and solid curves rep-
resent the results with and without the transformations respec-
tively. The VB cost is minus lower bound of the log marginal
likelihood, that is, the VB cost is minimized during learning.

For both datasets, we discarded 20% of the data and used
that as a test set. We usedD = 50 andD = 100 components
for MNIST and MovieLens datasets respectively. In both ex-
periments, we used a hierarchical prior forW, as presented in
Section 2.

Fig. 4 shows the results for both datasets obtained with and
without the transformations. In both cases, the transformations
made the convergence faster and more stable. Learning was 100
and 10 times faster for MNIST and MovieLens respectively.
One can also notice that the algorithm converged to two differ-
ent solutions for the MNIST dataset and the solution obtained
without the transformations was slightly better. However,this
result should not be interpreted as a drawback of using the trans-
formations.

Note also that the convergence of the runs without the trans-
formations can get stuck in a difficult region of the optimized
parameter space (see the l.h.s. plots in Fig. 4). This introduces
a risk of too early stopping when an automatic stopping crite-
rion is used. On the contrary, the runs with the transformations
seem to avoid this problem: in all our experiments they con-
verged very fast to the vicinity of a local optimum.
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5. Conclusions and discussion

In this paper, we showed how simple transformations of the
latent space can speed up leaning of variational Bayesian factor
analysis models. The presented approach resembles the more
general idea of using auxiliary parameters in VB learning [23].
We gave theoretical justification and showed experimentally
that the proposed transformations can significantly improve the
rate of convergence. The transformations become more sig-
nificant for large-scale datasets and larger number of compo-
nents. Fast convergence is especially important when one needs
the computed lower bound of the log marginal likelihood to do
model comparison. Another possible approach to speeding up
learning of variational PCA is explicitly incorporating the or-
thogonality restrictions into the model [27].

Apart from a possible speed-up of learning, the proposed
transformation produces an intuitive representation of the la-
tent space, similarly to standard PCA. This allows, for exam-
ple, to use the computed meansxn as the analogue of the princi-
pal components in algorithms which require preprocessing with
whitening (see, e.g. [14]).

Similar transformations can improve the algorithms for other
related variational Bayesian latent variable models. The exact
formulae for other models can be derived using the presented
methodology. For example, when the model in Section 2 is
restricted to have fixed broad prior forW, that is, hyperparame-
tersαd are fixed to some small values, the optimal rotation can
be shown to yield 1

N−M

〈
XXT
〉
∗
= I, with N > M, instead of

(10).
Transformations can easily be derived for robust PCA models

which use heavy-tailed Student-t distribution for the observa-
tion noise [19] and for latent componentsX as well [1]. When
the Gaussian prior is used to describeX [19], the rotation de-
fined by (10) and (11) remains optimal. When the prior model
for the hidden components is described using the multivariate
Student-t distribution, one can use a hierarchical prior model

p(X) =
N∏

n=1

S(xn|0, I, ν) =
N∏

n=1

∫
N
(
xn|0, u

−1
n I
)
G
(
un|

ν
2 ,

ν
2

)
dun,

whereν denotes the degrees of freedom andun are auxiliary
latent variables. Integrating out variablesun results in the
Student-t prior for X. Then, the optimal rotation can be shown
to yield

1
N

〈
X diag(u)XT

〉
∗
= I ,

which should be used instead of (10). Here, diag(u) is a diago-
nal matrix with elementsun on its diagonal.

The presented ideas might be extended to VB learning of
other factor analysis models in which the latent variables ap-
pear in the data model in the formWX, as in (2). For example,
a relevant transformation for blind source separation methods
based on dynamical generative models [9] might be applying
fast separation algorithms [28] during learning. Similar ideas
might also be used in nonlinear and mixture models as well
[5, 10, 12, 21, 25].
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[27] Šmidl, V., Quinn, A., September 2003. Fast variational PCA for func-
tional analysis of dynamic image sequences. In: Proceedings of the 3rd
International Symposium on Image and Signal Processing andAnalysis
(ISPA’2003). Vol. 1. pp. 555–560.

[28] Ziehe, A., Müller, K.-R., 1998. TDSEP — an effective algorithm for blind
separation using time structure. In: Proceedings of the 8thInternational
Conference on Artificial Neural Networks (ICANN ’98). Skövde, Swe-
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A. Derivation of the translation

In this section, we derive the optimal translationb which
maximizes the log-likelihood lower bound in (8). Ifµ has
a broad prior, the term

〈
log p(µ)

〉
∗ is constant. The terms

−
〈
logq(X)

〉
∗ and−

〈
logq(µ)

〉
∗ are entropies of Gaussian distri-

butions, which are in general constant with respect to the mean
parameter. Therefore these terms are also constant with respect
to b. Removing the constant terms, the following remaining
terms form the non-constant part of the lower bound:

〈
log p(Y|Θ)

〉
∗ = −

〈τ〉

2

N∑

n=1

(
xn − b

)T ∑

m∈Omn

Σwm

(
xn − b

)
+ const,

〈
log p(X)

〉
∗ = −

1
2

N∑

n=1

(
xn − b

)T (xn − b
)
+ const,

whereOmn is the set of indicesm for which ymn is observed,
that is, missing values are ignored. Taking the derivative with
respect tob and equating the result to zero yields the optimal
transformation

b =


N∑

n=1

Ψn


−1 

N∑

n=1

Ψnxn

 , (18)

whereΨn = I +
∑

m∈Omn
〈τ〉Σwm. This formula can be approxi-

mated in order to reduce the computational cost. Assuming that
Ψn is approximately constant with respect ton, that is there are
few missing values or the posterior covarianceΣwm is small,Ψn

is cancelled out and the formula reduces to

b ≈
1
N

N∑

n=1

xn .

B. Derivation of the rotation

In this section, we derive the optimal rotationR which max-
imizes the log-likelihood lower bound in (9). Assuming broad

prior for α (i.e.,aα → 0 andbα → 0), the fourth term in (9) is
constant. Thus, the following terms remain non-constant:

〈
log p(X)

〉
∗ = −

1
2

tr
(
R−1
〈
XXT
〉
R−T
)
+ const,

−
〈
logq(X)

〉
∗ =

1
2

N∑

n=1

log
∣∣∣R−1
ΣxnR−T

∣∣∣ + const

= −N log |R| + const,

〈
log p(W|α)

〉
∗ =

M
2

D∑

d=1

〈
logαd

〉
∗ −

1
2

tr
(
diag〈α〉∗R

T
〈
WTW

〉
R
)
+ const,

−
〈
logq(W)

〉
∗ =

1
2

M∑

m=1

log
∣∣∣RT
ΣwmR

∣∣∣ + const

= M log |R| + const.

The broad prior forα yields 〈αd〉∗ ≈ M/
(
rT

d

〈
WTW

〉
rd

)
, and

therefore the latter term in
〈
log p(W|α)

〉
∗ is a constant:

−
1
2

tr
(
diag〈α〉∗R

T
〈
WTW

〉
R
)

= −
1
2

D∑

d=1

〈αd〉∗r
T
d

〈
WTW

〉
rd = −

1
2

D∑

d=1

M = const,

and can be discarded.
We representR using its singular value decomposition as

R = UΛV, whereU andV are orthogonal matrices andΛ is
diagonal. MatrixV cancels out in most of the terms affecting
only the term

M
2

D∑

d=1

〈
logαd

〉
∗ ≈ −

M
2

log
D∏

d=1

1
2

rT
d

〈
WTW

〉
rd + const.

Thus,V can be found by maximizing this term, which is equiv-
alent to minimization of the product of the diagonal elements
of VT

ΛUT
〈
WTW

〉
UΛV. For a positive definite and symmetric

matrix, the product of the diagonal elements is bounded below
by the determinant4 and it equals the determinant if the matrix
is diagonal. Since an orthogonal rotation does not change the
determinant, the optimalV is obtained when

VT
ΛUT
〈
WTW

〉
UΛV =

〈
WTW

〉
= diagonal matrix.

Now, applying the result that the product of the diagonal ele-
ments equals the determinant, we obtain

M
2

D∑

d=1

〈
logαd

〉
∗ ≈ −

M
2

log
∣∣∣RT
〈
WTW

〉
R
∣∣∣ + const

= −M log |R| + const,

4This can be seen using the Cholesky decomposition of a positive definite
and symmetric matrixC = LLT , whereL is lower triangular, and therefore
|LLT | = |L|2 =

∏D
d=1 l2dd ≤

∏D
d=1
∑d

i=1 l2id which is the product of the diagonal
elements ofC.
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which cancels out−
〈
logq(W)

〉
∗. Therefore the lower bound

maximized w.r.t.U andΛ simplifies to
〈
log p(X)

〉
∗ −
〈
logq(X)

〉
∗ + const

= −
1
2

tr
(
(UΛ)−1

〈
XXT
〉
(UΛ)−T

)
− N log |UΛ| + const.

Equating the derivative w.r.t.UΛ to zero yields the following
requirements for the matricesU andΛ

UΛ2UT =
1
N

〈
XXT
〉

or equivalently

1
N

〈
XXT
〉
∗
= VT

Λ
−1UT 1

N

〈
XXT
〉
UΛV = I .

C. Rotation to the PCA basis for Probabilistic PCA

The variational view of the EM algorithm [22] allows for an
interpretation of the learning algorithm for probabilistic PCA
[24] in which the following function

F (W,µ, τ, q(X)) =
〈
log p(Y|W,X,µ, τ)

〉
−

〈
log

q(X)
p(X)

〉
, (19)

is maximized w.r.t. to the model parametersW, µ, τ and the pdf
q(X) which is defined as in (4).

We consider the same transformations (7), (2.2.2) which do
not change the first term in (19). The second term in (19) is
minus Kullback-Leibler divergence betweenq(X) andp(X):

D =

〈
log

q(X)
p(X)

〉
=

N∑

n=1

∫
q(xn) log

q(xn)
p(xn)

dxn

=
1
2

N∑

n=1

[
tr(Σxn) + xT

nxn − log |Σxn |
]

(20)

becausep(xn) = N(xn|0, I). Transformation (7) changes (20) to

D =
1
2

N∑

n=1

[
tr(Σxn) + (xn − b)T(xn − b) − log |Σxn |

]
.

Now taking the derivative w.r.t.b and equating it to zero yields

b =
1
N

N∑

n=1

xn .

Similarly, transformation (2.2.2) withA = R−1 gives

D =
1
2

N∑

n=1

[
tr(AΣxnAT) + xT

nATAxn − log
∣∣∣AΣxnAT

∣∣∣
]

=
1
2

tr(A
〈
XXT
〉
AT) −

1
2

N∑

n=1

log
∣∣∣AΣxnAT

∣∣∣ .

Taking the derivative w.r.t.A gives

A
〈
XXT
〉
− N(AT)−1 = 0 ,

which implies that the following holds for optimalA:

A
1
N

〈
XXT
〉
AT =

1
N

〈
XXT
〉
= I .
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