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Abstract

This paper presents an efficient Gaussian
process inference scheme for modeling short-
scale phenomena in spatio-temporal datasets.
Our model uses a sum of separable, com-
pactly supported covariance functions, which
yields a full covariance matrix represented
in terms of small sparse matrices operating
either on the spatial or temporal domain.
The proposed inference procedure is based on
Gibbs sampling, in which samples from the
conditional distribution of the latent func-
tion values are obtained by applying a sim-
ple linear transformation to samples drawn
from the joint distribution of the function val-
ues and the observations. We make use of
the proposed model structure and the con-
jugate gradient method to compute the re-
quired transformation. In the experimental
part, the proposed algorithm is compared
to the standard approach using the sparse
Cholesky decomposition and it is shown to be
much faster and computationally feasible for
100–1000 times larger datasets. We demon-
strate the advantages of the proposed method
in the problem of reconstructing sea surface
temperature, which requires processing of a
real-world dataset with 106 observations.

1 Introduction

Gaussian processes (GP) provide an elegant method
for modeling non-linear functions in the Bayesian
framework (Rasmussen and Williams, 2006). They are
widely used for modeling spatio-temporal phenomena,
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where a typical problem is to model an unknown field
as a function of location and time using a set of noisy
measurements. Many other classical tools, such as em-
pirical orthogonal functions, kriging, Kalman filtering
and smoothing, are based on modeling either the tem-
poral or spatial structure but not both.

The main factor limiting the use of GPs for large
data sets is the high computational cost. The stan-
dard approach involves computing the Cholesky de-
composition of an N ×N covariance matrix, where N
is the number of data points. This requires, in gen-
eral, O(N3) time and O(N2) memory, seriously limit-
ing the tolerable size of the data sets. One approach
to reduce the computational cost is based on comput-
ing a low-rank approximation of the covariance ma-
trix (e.g., Quiñonero-Candela and Rasmussen, 2005;
Snelson and Ghahramani, 2006; Titsias, 2009). This
is especially suitable when the characteristic length-
scale is much larger than the distance between neigh-
boring data points. On the other hand, short-scale
variability can be modeled using compactly supported
covariance functions to construct a sparse covariance
matrix, which makes it possible to use efficient sparse
matrix algorithms (e.g., Vanhatalo and Vehtari, 2008;
Furrer et al., 2006; Rasmussen and Williams, 2006).
It is also possible to cluster the data and model lo-
cal GPs on these clusters (Snelson and Ghahramani,
2007). However, none of these methods scale to model
the short-scale variability of very large spatio-temporal
datasets. Efficient methods based on the fast Fourier
transform (FFT) require that the data is from a regu-
lar equispaced grid (Fritz et al., 2009), which is often
an unrealistic restriction.

There has been much research on how to define reason-
able covariance functions acting on space-time inputs
(Cressie and Huang, 1999; De Iaco et al., 2001; De Ce-
sare et al., 2001; Gneiting, 2002; Stein, 2005). The
simplest approach is to use separable covariance func-
tions, which multiply covariances computed separately
in the spatial and temporal domain. Although separa-
ble covariance functions are known to have shortcom-
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ings (Cressie and Huang, 1999; Fuentes, 2006; Stein,
2005), they are often used for constructing more com-
plex non-separable covariance functions (e.g., De Iaco
et al., 2001; De Cesare et al., 2001). The use of sep-
arable covariance functions have the advantage that
the resulting covariance matrix is represented in terms
of the Kronecker product of smaller covariance ma-
trices acting only in the spatial or temporal domain.
This allows using significantly less memory for storing
the covariance matrix. In addition, efficient inference
is straightforward when the observations are noiseless
and there are no missing values (e.g., Rougier, 2008).

The focus of this paper is on deriving an efficient
GP inference procedure for short-scale spatio-temporal
models. We assume that the covariance function is a
sum of spatially and temporally separable covariance
functions. In order to concentrate on modeling short-
scale variability, we use compactly supported covari-
ance functions. Efficient GP inference in the consid-
ered case is not straightforward for several reasons.
Firstly, in realistic settings when the covariance func-
tion is a sum of separable ones, observations are noisy
or there are missing data, the covariance matrix does
not have the Kronecker product structure. Secondly,
direct methods based on the sparse Cholesky decom-
position of the covariance matrix are not applicable
because the Kronecker product of two sparse matrices
may contain too many non-zero elements. Although
similar covariance structures has been studied before,
the existing methods are not suitable for modeling
short-scale variability of large datasets because they
use low-rank approximations of the covariance matrix
(Bonilla et al., 2008) or need to explicitly form and
invert it (Zhang, 2007). We show how to perform
Bayesian inference using sampling methods. The sam-
pling scheme is based on transforming samples from
the joint prior distribution to posterior samples using
the conjugate gradient method.

The rest of the paper is organized as follows. Sec-
tion 2 briefly presents existing GP regression ideas for
spatio-temporal modeling. Section 3 proposes a novel
method by constructing a covariance function as a sum
of separable covariance functions and showing how to
perform Bayesian inference using Gibbs sampling. Sec-
tion 4 compares the proposed algorithm with the tra-
ditional methods using both artificial data and a large
sea surface temperature data set.

2 Background

2.1 Gaussian Process Regression

Gaussian processes are used for setting distributions
over unknown functions. Let {(xn, yn)}Nn=1 be a set of

given input-output pairs:

yn = f(xn) + noise, (1)

where f is the unknown function of interest and the
noise is typically Gaussian. In the GP methodology,
the prior distribution over f is chosen such that the
noiseless function values f = [f(x1), . . . , f(xN )]T are
assumed to be normally distributed:

p(f |θ) = N (f |0,Kf )

with covariance matrixKf whose ij-th element is com-
puted using covariance function k(xi,xj ; θ) for the cor-
responding inputs xi, xj and hyperparameters θ. As-
suming Gaussian noise in (1) yields likelihood

p(y|f , θ) = N (y|f ,Σ) ,

in which y = [y1, . . . , yN ]T and the noise covariance
matrix is often chosen to be Σ = σ2I. Then applying
Bayes’ rule results in the following posterior:

p(f |y, θ) = N
(

f |Kf (Kf +Σ)−1y,Ψ
)

, (2)

where Ψ = Kf −Kf (Kf +Σ)−1Kf .

Typically, one evaluates the posterior mean and vari-
ance of the function values for the optimized hyperpa-
rameters.

Compactly supported covariance functions are used to
model short-scale variability rather than long-scale de-
pendencies (Rasmussen and Williams, 2006). An ex-
ample of a compactly supported covariance function
is

(1 − r)j+2

+

(

(j2 + 4j + 3)r2 + (3j + 6)r + 3
)

/3, (3)

where r = ‖x− x′‖/θ, (x)+ = max(x, 0), j = ⌊β
2
⌋+ 3

and β is the dimensionality of the input x. The co-
variance is zero if the distance between the inputs is
greater than the length-scale parameter θ, thus the
function produces sparse covariance matrices by con-
struction. One can therefore utilize sparse matrix al-
gorithms gaining significant computational advantage.

2.2 Separable Covariance Functions for

Space-Time Inputs

We consider spatio-temporal data sets which are de-
fined on a grid such that the set of input points
is a Cartesian product S × T = {(sm, tn) : m =
1, . . . ,M, n = 1, . . . , N} of the set of spatial points
S = {sm} and the set of time instances T = {tn}. The
individual sets S and T do not need to be regular, that
is, the spatial points can be arbitrarily located and the
time points do not need to be evenly spaced, contrary
to the FFT-based methods (Fritz et al., 2009). The
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latent function values f and the observations y can be
presented as M ×N matrices F and Y, where [F]mn

and [Y]mn correspond to input (sm, tn).

For computational efficiency, the covariance function
is often assumed to be separable as

k ((s, t), (s′, t′); θ) = ks(s, s
′; θs)kt(t, t

′; θt),

where ks and kt operate on the spatial and temporal
domains, respectively, and θs and θt are the hyperpa-
rameters of the covariance functions. As the input set
is a Cartesian product, the resulting MN ×MN prior
covariance matrix is a Kronecker product

Kf = KT ⊗KS , (4)

where KS and KT are M ×M and N ×N covariance
matrices computed for input sets S and T using ks
and kt, respectively. Thus, the memory requirement
is reduced from O(M2N2) for full matrices to O(M2+
N2).

If one uses compactly supported covariance functions
over the spatial and temporal domains, it is possi-
ble that the covariance matrices use even less memory
than the data. This can be seen from the following:
Let DS and DT be the average number of spatial and
temporal neighbors (elements that have non-zero co-
variance) per location and time instance. The memory
required isO(MN) for the data andO(DSDTMN) for
the sparse spatio-temporal covariance matrix. How-
ever, utilizing the Kronecker product structure reduces
the memory requirement for the covariance matrix to
O(DSM + DTN). If DS ≪ N and DT ≪ M , the
memory consumption is dominated by the data ma-
trix instead of the covariance matrix. For instance,
a 1000 × 1000 data matrix takes 8 MB of memory in
double precision. If the covariance matrices KS and
KT have only 10 non-zero elements per row on aver-
age, they both would only use 0.48 MB of memory
in the sparse representation. For comparison, the full
covariance matrix would use 2.4 GB, which might be
infeasible for matrix decomposition algorithms both in
computation time and memory usage.

The Kronecker product structure makes the matrix
computations more efficient by utilizing the following
properties:

(A⊗B)[X]: = [BXAT]:, (5)

AB⊗CD = (A⊗C)(B⊗D), (6)

(A⊗B)−1 = A−1 ⊗B−1, (7)

where [X]: is a vector obtained by stacking the col-
umn vectors of X. For example, (7) explains why
the inverse of Kf in (4) can be computed efficiently.
From (6) it follows that the Cholesky factor of Kf =

KT ⊗KS is also a Kronecker product. These proper-
ties can be exploited efficiently if the data has no noise
(Σ = 0) nor missing values (Rougier, 2008).

3 Short-Scale Spatio-Temporal

Gaussian Process

We now consider a more realistic scenario when the
observations are noisy, that is, Σ 6= 0, and when there
are missing observations for some of the pairs (sm, tn).
We also consider a more complex covariance function
which is a sum of separable covariance functions:

k((s, t), (s′, t′); θ) =

D
∑

d=1

kds (s, s
′; θd

s )k
d
t (t, t

′; θd
t ), (8)

where the magnitudes are controlled by a scale param-
eter in kds or kdt . This form of the covariance function
is used to overcome some of the known shortcomings
of the separable covariance functions. The resulting
covariance matrix is then

Kf =

D
∑

d=1

Kd
f , and Kd

f = Kd
T ⊗Kd

S ,

where Kd
S and Kd

T are computed using kds and kdt ,
respectively. The function values corresponding to the
prior covariance matrix Kd

f are denoted as Fd. If there
are missing values in the data matrixY, the covariance
matrix can be constructed as

Ky = P(Kf +Σ)PT, (9)

where P is a matrix obtained by removing the rows
corresponding to the missing observations from the
MN × MN identity matrix. The use of matrix P

results in removing the elements that correspond to
the missing observations. Note that the computation
of the covariance matrix Ky would require a large
amount of memory, thus it is not computed explicitly.

Similar models have been explored in the context of
multi-task learning (Bonilla et al., 2008) and a multi-
variate linear coregionalization model (Zhang, 2007).
The method by Zhang (2007) requires the direct com-
putation and inversion ofKy, which is prohibitive even
for small M and N . Bonilla et al. (2008) use a sepa-
rable covariance matrix (i.e., D = 1) and it is approx-
imated by using a lower dimensional representation,
making short-scale modeling inaccurate. Thus, these
methods are not well suited for modeling short-scale
phenomena in large data sets.

3.1 Evaluation of the Posterior of Latent

Function Values F

In the present setting, efficient evaluation of the pos-
terior p(f |y) in (2) is not straightforward because ma-



Efficient Gaussian Process Inference for Short-Scale Spatio-Temporal Modeling

trix Ky which must be inverted is not, in general, a
Kronecker product of two matrices. The Kronecker
product property is lost because of the presence of the
noise, the missing observations (the rows and columns
corresponding to the missing data are removed from
Ky in (9)) and the use of the sum of separable co-
variance functions in (8). Thus, the Cholesky factor is
not a Kronecker product, causing high computational
costs and large memory requirements for computing
the Cholesky decomposition.

Instead of computing the Cholesky decomposition, one
can use iterative methods that solve systems of linear
equations, such as the conjugate gradient method, to
evaluate terms of the form (Kf + Σ)−1[X]:. In this
approach, one has to compute matrix-vector products
which can efficiently be done using (5):

(Kf +Σ)[A]: =

D
∑

d=1

[

Kd
SAKd

T

]

:
+ v ◦ [A]:,

where A is an arbitrary matrix, ◦ denotes the entry-
wise product and Σ = diag(v), that is, Σ is a diago-
nal matrix and vector v contains its diagonal elements.
This approach can be used to compute at least the pos-
terior means. However, the computation of the poste-
rior variances in a similar way is too expensive: One
would need to apply a similar procedure for comput-
ing the posterior variance of each latent function value.
Therefore, this approach is impractical for large data
sets.

In this paper, we propose to examine the posterior
distribution of the latent function values by drawing
samples from it. This can be done efficiently by us-
ing the following result. Let f and y be multivariate
Gaussian variables:

[

f

y

]

∼ N

([

µf

µy

]

,

[

Kf Kfy

Kyf Ky

])

.

Now, if we can draw samples (f̃ , ỹ) from the joint dis-
tribution p(f ,y) and transform them to

f∗ = f̃ −KfyK
−1
y (ỹ − y) (10)

using fixed y, then the transformed samples f∗ would
come from the conditional distribution p(f |y) defined
in (2). This can easily be checked by computing the
first two moments for (10).

The presented approach is feasible for our GP model
because it is possible to draw samples from p(f ,y) and
to compute transformation (10) efficiently. Let Ld

T and
Ld
S be the sparse Cholesky factors of matrices Kd

T and

Kd
S , respectively, that is, Kd

T = Ld
TL

d
T

T
and Kd

S =

Ld
SL

d
S

T
. Then, the Cholesky factor of Kd

f is Ld
f =

Ld
T⊗Ld

S . Let now Z0, . . . ,ZD be matrices of sizeM×N

with the elements drawn independently from N (0, 1).
The samples from the joint distribution p({Fd},Y|θ)
can be obtained by

F̃d = Ld
SZd(L

d
T )

T, [Ỹ]: =

D
∑

d=1

[F̃d]: + diag(v)
1

2 [Z0]:.

Now, the transformation (10) can be used to produce
samples from p({Fd}|Y, θ):

[Fd]: = [F̃d]: −Kd
fP

TK−1
y P

(

[Ỹ]: − [Y]:

)

. (11)

Transformation (11) can be computed efficiently by
using iterative algorithms (e.g., the conjugate gradi-
ent method) to avoid the direct inversion of Ky and
by utilizing the Kronecker product structure of Kd

f to
compute the required products. Note that the conju-
gate gradient method needs to be applied only once in
order to draw a sample of each F1, . . . ,FD and that
these samples are from the true posterior up to the
numerical accuracy of the conjugate gradient method
(we used error tolerance 10−6 as the stopping criterion
in the algorithm by Shewchuk (1994)). The conjugate
gradient method was also used to draw samples from
the Gaussian distribution by Wikle et al. (2001) when
the inverse of the covariance matrix is easy to com-
pute. In practice, drawing 10–1000 samples is typi-
cally enough to compute the required statistics with
reasonable accuracy. For instance, the variance of the
sample mean estimator is inversely proportional to the
number of samples.

Predictions can be made efficiently given posterior
samples of {Fd} and θ. As before, we assume that
the input set for the predictions is a Cartesian prod-
uct S̃ × T̃ of two sets S̃ = {s̃m̃} and T̃ = {t̃ñ}. The
posterior predictive distribution is

p
(

{F̃d}
∣

∣

∣
{Fd},Y, θ

)

=

D
∏

d=1

N
(

[F̃d]:

∣

∣

∣
µd,Λd

)

,

where

µd =
(

Kd

T̃T
⊗Kd

S̃S

) (

Kd
T ⊗Kd

S

)−1
[Fd]:

Λd = Kd

T̃
⊗Kd

S̃

−
(

Kd

T̃T
⊗Kd

S̃S

) (

Kd
T ⊗Kd

S

)−1 (

Kd

T T̃
⊗Kd

SS̃

)

.

Kd

T̃T
is defined as

[

Kd

T̃T

]

ij
= kdt (t̃i, tj ; θ

d
t ) and the co-

variance matrices Kd

T T̃
, Kd

T̃
, Kd

S̃S
, Kd

SS̃
and Kd

S̃
are

computed similarly by using the covariance functions
kds and kdt and the input sets S, S̃, T and T̃ appro-
priately. Samples from this posterior predictive dis-
tribution can be drawn extremely efficiently by using
a similar transformation as in (10) (no need for the
conjugate gradient method) and the properties of the
Kronecker product (5)–(7).
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3.2 Evaluation of the Posterior of

Hyperparameters θ

The traditional ways to do inference about the hyper-
parameters are computationally expensive and there-
fore impractical for large data sets. The general ex-
pression for the log-posterior log p(θ|Y) of the hyper-
parameters is up to a constant

−
1

2
[Y]T: K

−1
y [Y]: −

1

2
log |Ky|+ log p(θ), (12)

which has to be computed many times either for draw-
ing samples from the posterior or for finding the max-
imum of (12) with respect to the hyperparameters.
However, the computation of log |Ky| is very expen-
sive in general and it is possible to simplify the com-
putations in the case of separable covariance func-
tions with an isotropic noise model, that is, when
Ky = KT ⊗KS + σ2I.1

In this paper, we propose to use Gibbs sampling to
draw samples from the joint posterior p(θ, {Fd}|Y).
Drawing samples from the conditional distribution
p({Fd}|θ,Y) was discussed in Section 3.1 and there-
fore we need to design an efficient sampler from the
conditional distribution p(θ|{Fd},Y) and to set the
prior distribution p(θ).

In order to build an efficient Gibbs sampler, we use
the reparameterization method proposed by Murray
and Adams (2010). The problem here is that condi-
tioning on {Fd} makes the distribution of θ extremely
narrow and the updates of θ small, causing the Gibbs
sampler to proceed slowly. The sampling efficiency can
be improved by reparameterizing the model such that
the latent variables are less dependent on the hyper-
parameters. This can be achieved by using auxiliary
variables Gd which satisfy [Fd]: = (Ld

T ⊗ Ld
S)[Gd]:, or

equivalently

Fd = Fd(θ,Gd) = Ld
SGd

(

Ld
T

)T
. (13)

Note that Ld
S , L

d
T are the Cholesky factors of matrices

Kd
S , K

d
T and therefore they are functions of θ. This

yields the transformed probabilistic model

p (Y, {Gd} , θ) = p (Y |{Fd} , θ ) p ({Gd} | θ) p (θ)

in which p ({Gd} | θ) is constant with respect to θ by
the choice of (13). For the Gibbs sampler, samples
from p ({Gd}|θ,Y) can be drawn by first sampling
from p(F1, . . . ,FD|θ,Y) and then using (13) to solve

1In that case, one can compute the singular value de-
composition (SVD) of two matrices KS = USΛSU

T

S and
KT = UTΛTU

T

T , which simplifies computing SVD Ky =
(US ⊗UT )(ΛS ⊗ΛT +σ

2I)(US ⊗UT )
T. This can be used

for evaluating the log-determinant and the inverse.

for Gd, which can be done efficiently because of the
sparse, lower-triangular structure of Ld

S and Ld
T .

Sampling from the conditional distribution

p(θ|{Gd},Y) ∝ p (Y |{Fd(θ,Gd)} , θ ) p(θ).

is efficient because p (Y |{Fd}, θ ) has a diagonal co-
variance matrix diag(v). One can use, for instance,
slice sampling (Neal, 2003; Murray and Adams, 2010),
which requires little tuning, or Hamiltonian Monte
Carlo (Neal, 2011). In our experiments, the hyperpa-
rameters usually had very small correlations, thus axis-
aligned slice sampling was very efficient. The main
challenge for the sampler is not the posterior correla-
tions between the hyperparameters but that the hy-
perparameters are sampled conditioned on the (trans-
formed) latent function values. Thus, the alternat-
ing sampling of {Fd} and θ may cause high auto-
correlation for θ using any sampling method. Fortu-
nately, for large data sets, the distribution is likely to
be sharply peaked, thus obtaining only a few effectively
independent samples is often sufficient in practice.

4 Experiments

4.1 2-D Artificial Experiment

We used artificially generated data to compare the
computational efficiency of the proposed algorithm
based on sampling with the traditional approach which
computes the mean and the variances for the latent
function values exactly and performs sampling of the
hyperparameters. In the traditional approach, the
posterior means and variances are computed using (2)
and the samples of hyperparameters θ are drawn using
the marginal log-posterior (12). In this case, covari-
ance matrix Ky and its Cholesky factor are computed
explicitly by utilizing sparse matrix algorithms.

We used artificial data in which the latent function
values were generated using a GP model with a sep-
arable covariance function as in (8) with D = 1 and
compactly supported ks(s, s

′), kt(t, t
′) of form (3) with

the cut-off length 10. The data were generated on a
2-dimensional regular square lattice with input sets
S = {1, 2, . . . , n} and T = {1, 2, . . . , n} resulting in
N = n2 data points as there were no missing observa-
tions. The variance of the latent function values was
set to one. Gaussian noise with standard deviation
0.3 was then added to the observations. In order to
estimate the performance as a function of the data set
size, the total number N of the data points was varied
in the range [103 108]. Note that the available amount
of computer memory limited the tolerable data set size
to 105 for the traditional method and to 108 for the
proposed one.
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The data sets were processed by the GP model which
assumes the same covariance function model that was
used for generating the data. Thus, the model had four
hyperparameters: the two length-scale parameters of
the compactly supported covariance functions ks(s, s

′),
kt(t, t

′), the variance of the latent function values and
the variance of the isotropic noise Σ = σ2I.

In the first experiment, we compared the computing
times required for the evaluation of the posterior of the
latent function values F when the hyperparameters are
fixed to the values which were used for generating the
data. Figure 1a shows the CPU time needed for the
exact inference with the traditional approach and the
average time for drawing one sample and 100 samples
for the proposed algorithm. Note that both axes are
in log-scale, thus the slope of each line is roughly the
exponent α of the computational complexity O(Nα).
The computational cost of the traditional approach is
approximatelyO(N2) while for the proposed approach
it is O(N). The results show that for the considered
data sets, the proposed method can do inference for
approximately 100–1000 times larger data sets than
the traditional method in the same CPU time, de-
pending on how many samples is considered sufficient.
In this experiment, already 10 samples gave a good
approximation of the posterior distribution (see Fig-
ure 1b) and with 100 samples the approximation was
almost indistinguishable from the true posterior.

In the second experiment, we compared the efficiency
of drawing posterior samples of hyperparameters θ.
Both the traditional and the proposed algorithms used
slice sampling. For simplicity, the hyperparameters
were initialized at the true values and the prior for
each hyperparameter was broad. Slice sampling does
not produce independent samples, thus we computed
the effective sample size (ESS) based on the autocorre-
lation of the hyperparameters (Neal, 1993). The small-
est ESS among the four hyperparameters was taken
as the ESS for each method. Figure 1c shows the
CPU time needed for producing one actual sample and
one effectively independent sample using the two ap-
proaches. For the traditional algorithm, ESS was close
to the actual sample size, but for the proposed method
the autocorrelation was significant for some hyperpa-
rameters. Again, the proposed method works equally
fast for approximately 100 times larger data sets. The
main computational cost of the proposed algorithm
comes from the conjugate gradient iterations required
for sampling latent function values F.

4.2 Reconstruction of Historical Sea Surface

Temperatures

In this section, we consider a real-world problem which
is the reconstruction of the global sea surface tempera-

tures (SST) using historical observations. We used the
U.K. Met Office historical SST data set MOHSST5,
which contains monthly anomalies for 5◦×5◦ latitude-
longitude bins covering the period from 1856 to 1991
(Bottomley et al., 1990; Kaplan et al., 1998). Thus,
there are 1727 spatial locations, 1632 time instances,
and about 55% of the measurements are missing (pri-
marily in the early periods). The goal is to reconstruct
the missing information using the available data. One
of the main challenges here is the big size of the data
set, as there are about 1.3 · 106 observations in total.
One therefore needs efficient algorithms that scale well
to high-dimensional data.

We used the proposed algorithm to test its skills in the
reconstruction problem. We used two short-scale GP
models with D = 1 and D = 2 in (8) and compactly
supported spatial and temporal covariance functions of
form (3). For simplicity, the latitude-longitude coordi-
nates were transformed to points in the 3-D Euclidean
space as the spherical distance is approximately equal
to the Euclidean distance on the local scale. The
noise covariance matrix was assumed to be diagonal
Σ = σ2 diag(v), where the elements of v were fixed
to the inverse of the size of the corresponding spatial
bins.2 The two models had four and seven hyperpa-
rameters which were the variance of the latent func-
tion values, the length-scale parameters of kds (s, s

′) and
kdt (t, t

′), and the noise variance σ2. The hyperparame-
ters were assigned broad priors. We drew 1000 samples
of the hyperparameters and the latent function values
using the proposed method and discarded the first half
as burn-in.

For comparison, we used the variational Bayesian
variant of principal component analysis (VBPCA)
(Bishop, 1999) and Gaussian-process factor analysis
(GPFA), which sets Gaussian-process priors over the
latent spatial and temporal components (Luttinen and
Ilin, 2009). These models used 80 latent components
and a similar diagonal noise covariance matrix as the
short-scale GP. The setup for GPFA was copied from
(Luttinen and Ilin, 2009), although we used the ra-
tional quadratic covariance functions instead of the
squared exponential. 10 temporal components were
modeled with the rational quadratic covariance func-
tion, 5 with a quasi-periodic covariance function and
65 with a compactly supported covariance function.
The spatial components were modeled with the ratio-
nal quadratic covariance function. The sparse approx-
imations using pseudo-inputs (Titsias, 2009) were ap-
plied to the components without the compact support.

2Using such a noise model is essentially equivalent to
weighting the observations according to the square root of
the corresponding area, which is a standard preprocessing
step to take into account the uneven distribution of the
spatial locations.



Jaakko Luttinen, Alexander Ilin

10
3

10
4

10
5

10
6

10
7

10
8

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of data points

C
P

U
 ti

m
e 

(s
ec

on
ds

)

 

 

Cholesky
Kronecker (100)
Kronecker (1)

(a) Inference time of F (b) Comparison of accuracy

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Number of data points

C
P

U
 ti

m
e 

(s
ec

on
ds

)

 

 

Cholesky (eff.)
Cholesky (single)
Kronecker (eff.)
Kronecker (single)

(c) Sampling time of θ

Figure 1: A comparison of the standard method (sparse Cholesky) and the proposed method (Kronecker).
(a) The required CPU time for computing the mean and variance from the analytic equation (solid red) and
using 100 samples (solid blue) or 1 sample (dashed blue) by the proposed method. (b) A comparison of the
exact posterior distribution (red) to mean and two standard deviations computed using samples (blue) from
one spatial location. (c) The CPU time per effective posterior sample of the hyperparameters θ using standard
Cholesky method (solid red) or the proposed method (solid blue). The dashed lines show the CPU time for a
single auto-correlated sample in the chain.

In order to test the reconstruction performance, we
used parts of the available data as a test set. In the
first experiment, the test set was created by taking
data points uniformly with probability 0.2. In this
setting, most of the test data are surrounded by train-
ing samples, which is beneficial for the local model. In
the second experiment, we used the spatial pattern of
the values that are missing in the period 1856–1875
to take the corresponding observations from the pe-
riod 1972–1991 as the test set. We also reversed the
temporal order of the patterns so that the same lo-
cations which were not covered in January 1856 were
used as the test data for December 1991 and so on. In
this case, the amount of the test data was again about
20% of the total number of the observations. This set-
ting is more realistic because the coverage in the test
data resembles the pattern of the missing data in the
real reconstruction problem. It is also more difficult
for the local GP model, as the test data are farther
away from the training data.

The reconstruction performance was evaluated using
the weighted root mean square error (WRMSE)

√

√

√

√

(

∑

i

wi ([Y]i − [F]i)
2

)

/

(

∑

i

wi

)

,

where the weights {wi} are the areas of the corre-
sponding bin, F is the mean reconstruction and the

Table 1: Reconstruction WRMSE

Model Uniform Pattern CPU time

VBPCA 0.5926 0.7820 1 · 104s
GPFA 0.5767 0.7675 2 · 105s
GP (D = 1) 0.5399 0.7445 2 · 105s
GP (D = 2) 0.5322 0.7265 4 · 105s

sums are over those indices of the data Y that are in
the test set. The proposed short-scale GP performed
best for both test sets (see Table 1), VBPCA was the
worst and GPFA was in between. For the short-scale
GP, adding another separable covariance function (i.e.,
D = 2) improves the performance as the model is
able to learn different length-scales, which is impor-
tant especially for the pattern test set. Adding more
components to VBPCA or GPFA did not significantly
change the results as irrelevant components were au-
tomatically pruned out. The fact that the short-scale
GP performed the best suggests that local models
can alone perform relatively well in the reconstruction
tasks. However, one of the most impressive results was
the feasibility to process such a huge spatio-temporal
data set with a short-scale GP model.

Figure 2 shows the data and the reconstructions for
one month by the different methods. The reconstruc-
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Figure 2: Reconstructions of SST for one month using VBPCA, GPFA and GP for the training set from which the
test set was removed using the pattern from early years. (a) All available measurements. (b) The measurements
used for training. (c)-(f) The mean reconstructions of the methods. Grey color is used for missing values.

tions by the short-scale GPs and GPFA are smoother
than by VBPCA because the latter does not take into
account the spatial and temporal structure. The effect
of the local modeling can be noticed in the GP recon-
structions: In the larger regions without observations,
the posterior mean gets close to zero, which is the prior
mean. This effect may not be very prominent in the
presented plots because the short-scale GP model is
able to use even a few neighboring observations (in
space or in time) to reconstruct missing data.

The reconstructions could probably be improved by
combining the proposed GP model and GPFA. The
latter is more suited to capture global phenomena
(the dominating patterns in the system) whereas the
proposed method models local phenomena. GPFA is
based on a lower-dimensional representation of data,
which means that it may require a large number of la-
tent components in order to describe local phenomena
well. In addition, using inducing inputs for the GPFA
components strengthens the global structure assump-
tion. On the contrary, the proposed model does not
make low-rank approximations and it is not able to
capture long-distance correlations. Thus, GPFA and
the proposed method look at different features of the
process and it could be beneficial to combine them.

Although the short-scale GP model performed well
compared to the alternative methods, the main pur-
pose of the experiment was to show that the proposed
spatio-temporal GP method can be applied to large
real-world data sets and it can be useful in practical
reconstruction problems.

5 Conclusions

This paper presented an efficient Bayesian inference
method for short-scale GPs on large spatio-temporal
data sets. The model uses a sum of separable covari-
ance functions defined for space-time inputs, which
yields a covariance matrix described in the form of
a sum of Kronecker products of two smaller matrices.
The posterior inference scheme was based on Gibbs
sampling which drew posterior samples of the latent
function values using the conjugate gradient method
and the hyperparameters using slice sampling.

The method was experimentally compared to the tra-
ditional inference algorithms on both artificial and
real-world data. In comparison with the traditional
Gaussian process method using the sparse Cholesky
decomposition, the proposed inference method was
shown to scale to orders of magnitude larger data sets
with the same computational cost and memory usage.
Using the proposed method, it was possible to apply
short-scale GP modeling to a large sea surface temper-
ature data set with 106 observations achieving good
reconstruction performance.

The proposed GP method can be used as a build-
ing block for more complex model constructions. As
the method models only short-scale phenomena, it
could be combined with an efficient long-scale model
for distant correlations. Such global-scale methods do
not usually model the short-scale variability well and
therefore they might be improved by combining them
with the proposed model.
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