
Class-Con�dene Criti CombiningMatti Aksela, Ramūnas Girdziu�sas, Jorma Laaksonen, Erkki OjaHelsinki University of Tehnology, Laboratory of Computer and Information SieneP.O.Box 5400, Fin-02015 HUT, Finlandfmatti.aksela,ramunas.girdziusas,jorma.laaksonen,erkki.ojag�hut.�Jari KangasNokia Researh CenterP.O.Box 100Fin-33721 Tampere, Finlandjari.a.kangas�nokia.omAbstratThis paper disusses a ombination of two tehniques forimproving the reognition auray of on-line handwrittenharater reognition: ommittee lassi�ation and adap-tation to the user. A novel adaptive ommittee struture,namely the Class-Con�dene Criti Combination (CCCC)sheme, is presented and evaluated. It is shown to be ableto improve signi�antly on its member lassi�ers. Also theeffet of having either more or less diverse sets of memberlassi�ers is onsidered.1 IntrodutionIn on-line handwriting reognition the lassi�er or las-si�ers must be apable of proessing natural handwritingat high auraies for the appliation to be omfortable forthe user. Inluding the vast amount of intrinsi variation inhandwriting in the initial harater models is often impossi-ble, or at least very impratial. Thus adaptation is a feasi-ble or even an unavoidable way of improving performaneon any user-dependent handwriting reognition system.Combining several different lassi�ers in a ommitteeform is another way to reah for the best attainable reog-nition performane. Combining the results of several las-si�ers an improve performane beause in the outputs ofthe individual lassi�ers the errors are not neessarily over-lapping. Committee methods generally require more thanone member lassi�er to reognize the input. In on-linehandwritten harater reognition, this is not omputation-ally too omplex for even the smallest platforms due to theontinuous inrease in available omputational power. The

basi operation of a ommittee lassi�er is to take the re-sults of a set of member lassi�ers and attempt to om-bine them in a way that improves performane. The twomost important features of the member lassi�ers that af-fet the ommittee's performane are the individual errorrates of the member lassi�ers and the orrelatedness of theerrors. The more different the mistakes made by the lassi-�ers, the more bene�ial ombining them an be. Numer-ous ommittee strutures have reently gained attention, forexample boosting [1℄ and riti-driven ombining [4℄. TheBehavior-Knowledge Spae (BKS) method [3℄ is based on aK-dimensional disrete knowledge spae that is used to de-termine the lass labels based on previously stored deisioninformation.Though the adaptation is usually performed by adapt-ing a single lassi�er to the training data, it is also possibleto onstrut a ommittee that is adaptive as a whole. Themembers of an adaptive ommittee an be adaptive or non-adaptive themselves. One adaptive lassi�er ombinationstrategy is to ombine the member lassi�ers linearly usingweighting oef�ients dynamially aquired from a ombi-nation oef�ient preditor [8℄. We present here an adaptiveommittee lassi�ation sheme based on ritis evaluatingthe trustworthiness of the members. The tehnique is namedClass-Con�dene Criti Combining (CCCC).2 Class-Con�dene Criti CombiningGenerally, a riti-based approah is one in whih a sep-arate expert makes a deision on whether the lassi�er itis examining is orret or not. Criti-driven approahesto lassi�er ombining have been investigated previously,e.g. in a situation where the riti makes its deision based
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Figure 1. Struture of the CCCC ommitteeon the same input data as the lassi�er [4℄. In our Class-Con�dene Criti Combining (CCCC) approah the mainidea is to try to produe as good as possible an estimate onthe lassi�er's orretness based on its prior behavior forthe same harater lass.In CCCC the orretness evaluation results in a on�-dene value whih is based on the earlier performane ofthe lassi�er for the same harater lass. There are two dis-tane distributions for eah lass stored in eah riti. Oneorresponds to orret lassi�ation results and the otherone to inorret results. This is illustrated in Figure 1. Eahtime a new harater x is proessed, it is lassi�ed by allmember lassi�ers and the on�denes of the lassi�ationare alulated in eah riti. Two opposing on�denes areestimated in eah riti, one for the orretness and the otherfor the inorretness of the lassi�ation. The on�denesin the label k(x) from lassi�er k are based on the distri-bution of a distane-indiating value dk(x). For alulatingthe dk(x) value we need to know the distanes from the in-put x to the nearest prototypes, dk1(x) and dk2(x), alulatedfor the nearest and seond-nearest lass, respetively. In thease that the lassi�er is not based on distanes, we mayuse another analogous measure that dereases as similarityinreases. The value dk(x) an be obtained by taking theratio between the distane to the �rst result dk1(x) and thesum of the �rst and seond result distanes,dk(x) = dk1(x)dk1(x) + dk2(x) 2 [0; 12℄: (1)

Or, we may use diretly the distane to the nearest prototypealulated by the lassi�er,dk(x) = dk1(x) 2 [0;1): (2)The ommittee then uses one of the deision mehanismsspei�ed in Setion 2.3 to produe the �nal output from theinput label information and riti on�dene values qk(x)alulated from the on�denes for dk(x).The adaptation of the ritis, in pratie the modi�a-tion of the distributions, is performed assuming that it isknown whether the reognition result was orret or inor-ret. The dk(x) values reeived from the member lassi�ersare inorporated into the orresponding riti's appropriatedistribution, depending on the suggested lass and the or-retness of the result. In pratie this is done by appendingthe new dk(x) value to the list of values for that distributionand realulating the parameters needed for presenting thedistribution.2.1 Distribution typesIn order to obtain the on�denes for the deisions basedon previous results, the reeived dk(x) values must besomehow modeled. The approah of gathering previousvalues into distributions from whih the value for the on-�dene an be obtained has been hosen for this task. Thenotation used is that eah distribution i, where the shorthanddistribution index i runs over both orret and inorret dis-tributions for eah lass  in eah member lassi�er k, on-tains N i previously olleted values zij ; j = 1; : : : ; N i.The notation for the on�dene obtained from the distri-bution i stands as pi(dk(x)). For shortening the notationfurther, we shall use dk(x) = z.Gaussian normal distribution: The Gaussian normaldistribution is used by alulating the mean and varianefrom the already obtained samples and then alulating thevalues of a Gaussian normal distribution,pigaussian(z) = 1p2��i e� (z��i)22�2i ; (3)where�i is the mean and �2i the variane for the distributioni. Initial values are used for the mean when no samples existand for the variane when less than two samples have beenreeived for the partiular distribution.Non-parametri distribution: The non-parametrimodel is based on alulating the number of points in thedistribution that are further from the mean of the distribu-tion �i;k than the value for the input z, i.e. nf (z; i) =PNij=1 v(z; i; j), where v(z; i; j) = 1 if jz��ij < jzij ��ijand zero otherwise. The on�dene is then based on the ra-tio between nf (z; i) and the total number of points in the



distributionN i so thatpinonparam(z) = nf (z; i)N i : (4)Nearest neighbor approah: The nearest neighbor(NN) approah is not really a distribution, but the nearestneighbor rule is used in the sense of alulating the distanedimin(z) = minNij=1 jz � zij j from the input value z to thenearest value already in the distribution i.This is then usedwith the largest attainable distane dimax to reate a measureof on�dene, piNN(z) = 1� dimin(z)dimax : (5)If equation (1) is used, dimax = 0:5. When equation (2) isused, dimax is taken to be the largest value observed.Triangular kernel distribution estimate: This distri-bution estimate uses a triangular kernel funtion, de�ned bythe peak bandwidth b, whih is given as a parameter. Theestimate an be alulated by applying a kernel over all datapoints zij in the distribution i and normalizing by the num-ber of points N i. Beause b is independent of the distribu-tion and riti, there is no need to take it into aount in thenormalization;pitrikernel(z) = 1N i NiXj=1max f0; 1b (b� jz � zij j)g: (6)Gaussian kernel distribution estimate: The distribu-tion is estimated through the use of a Gaussian funtion asthe kernel. The kernel bandwidth b is used as the varianefor the Gaussian. The evaluation of the distributions' valuesat spei� points is performed as for the triangular kernel,pigausskernel(z) = 1N i NiXj=1 e� (z�zij)22b : (7)2.2 Combining on�dene valuesThe overall on�dene qk(x) given by riti k to thelassi�ation result k(x) of lassi�er k is obtained from theorret and inorret lassi�ation result distribution on�-denes porret(dk(x)) and pinorret(dk(x)), respetively, ei-ther by subtrating them from one another, whereqk(x) = porret(dk(x))� pinorret(dk(x)); (8)or by using just the on�dene from the orret distributionas the overall on�dene,qk(x) = porret(dk(x)): (9)It should be noted that (8) may produe also negative on�-denes indiating that the result from that member lassi�eris expeted to be inorret.

2.3 Deision mehanismsAs the ommittee now has label information from themember lassi�ers and the orresponding on�dene val-ues from the ritis to work with, a sheme is needed forombining them into a �nal result. The deision shemestake the labels k(x) for the input samples x from lassi-�ers k and the orresponding ritis' on�denes qk(x) toform the deision.Maximum on�dene seletion: The deision is madeby seleting the result whose riti has the highest on�-dene, (x) = j(x); j = arg Kmaxk=1 qk(x): (10)Con�dene-weighted majority voting: Weighted ma-jority voting is performed with the on�denes as theweights. With the use of the on�denes, the majority vot-ing sheme is modi�ed to assigning(x) = arg Cmax=1 KXk=1 qk(x)�k ; (11)whereC is the total number of lasses andK the number ofreognizers. �k = 1 when the result from the lassi�er kis the lass  and zero otherwise.Modi�ed Current-Best-Learning deision: TheCurrent-Best-Learning (CBL) algorithm [5℄ is originally aframework for learning general logial desriptions. Thisis aomplished through maintaining a single hypothesisand adjusting it as new examples arrive. Operations knownas generalization and speialization are used to adjustthe urrent hypothesis so that the resulting hypothesis isonsistent with all the examples.The algorithm used here has grown quite far from thatinitial idea, but as the resemblane is still evident, it ishere alled the Modi�ed Current-Best-Learning (MCBL)approah. If one interprets CBL as a method of ombininglassi�ers, the system an be viewed as a two-dimensionalgrid, with eah olumn representing a member lassi�er andeah row orresponding to a partiular lass. The valuesstored in the grid are estimates for the on�dene of a mem-ber lassi�er's deision if it lassi�es an input in that parti-ular lass. Speialization and generalization then give riseto hanging the on�dene values.When forming the lass-wise MCBL on�dene val-ues, one uses the on�denes obtained from the ritis,qk(x). By ombining them into lass-wise on�dene val-ues fk(k(x)), where k is the index of the lassi�er andk(x) the lass suggested by that lassi�er for the input x, atable onsisting of eah lassi�er's lassi�ation result andits on�dene an be formed. To modify the hypothesis,the values fk(k(x)) are adjusted when the ommittee as a



whole is inorret. When any individual lassi�er k of theommittee members is orret, the qk(x) value is added tothe on�dene of the lass for that lassi�er. On the otherhand, when a lassi�er produes an inorret result, its on-�dene for that lass is multiplied with the value qk(x). Themodi�ations an thus be formulated as8k 2 f1; : : : ;Kg :fk(k(x)) := ( fk(k(x)) + qk(x); if k(x) orretfk(k(x)) � qk(x) ; otherwise.(12)When the ommittee produes a orret result, the ur-rent hypothesis has been effetive and no hanges are made.Due to the on-line nature of the adaptation, no baktrakingis performed and eah sample is proessed only one. Theon�dene values an be initialized as the inverse of the or-dering of the lassi�ers aording to their dereasing reog-nition performane, ie. fk(!j) = 1k for all lassi�ers k andlass labels !j .Prior to the �nal deision, the obtained on�denes werestill modi�ed by joining the riti's urrent on�dene valueinto the obtained MCBL on�dene value by using thetransformation of equation (12). As the orretness is notknown at this point, the seletion is made based on whetherthe riti believes the member to be orret (qk(x) > 0)or not. This last step should be bene�ial when the ritisdiretly produe suf�iently aurate on�dene estimates.This modi�ation sheme was used as it was the onefound to produe the best results from a number of shemesexperimented with. For the �nal deision from the MCBLon�dene values, both the original sheme seleting theresult based on the maximum value as in equation (10) anda sheme using the weighted majority voting approah ofequation (11) were experimented with.3 Referene ommittee lassi�ersTo evaluate the results of the CCCC ommittee, someruns with referene ommittee lassi�ers have also beenarried out. They inlude the standard plurality voting, ad-justing plurality voting, and adjusting best approahes.Plurality voting ommittee: The �rst referene om-mittee simply uses the plurality voting rule to deide the�nal output. In the ase of a tie the approah of iterativelydropping the lassi�er with the lowest orretness rankingand revoting was used.Adjusting plurality voting ommittee: A simple ap-proah to adaptive ommittee deisions is to use a weightedvariation of the original plurality voting rule. Adapta-tion was implemented by introduing weights based on anevaluation of orretness for eah voting lassi�er, wherewk = 1+Nk1+PKj=1 Nj is the weight for the output and Nk is

the urrent ount of orret reognitions for the lassi�erk, andK is the total number of lassi�ers. The addition ofone in both the nominator and denominator is made to avoidboth zero weights and divisions by zero. The �nal plural-ity voting deision is obtained as in equation (11), with theweights wk replaing the on�denes qk(x).Adjusting best ommittee: In the adjusting best om-mittee the main idea is to selet the best lassi�er foreah individual writer by evaluating eah lassi�er's perfor-mane during operation and using the result from the lassi-�er that has performed the best up to that time. The perfor-mane evaluation is onduted by simply keeping trak oforret results obtained from eah lassi�er. At any giventime the ommittee's deision is thus the result from thelassi�er with the highest orret answer ount at that point,(x) = j(x), where j = argmaxKk=1Nk , with Nk beingthe urrent ount of orret reognitions for lassi�er k andk(x) the lass suggested by that lassi�er. In the ase of adraw, the result from the higher-ranked lassi�er is used.4 Member lassi�ersThe adaptive ommittee experiments were performed us-ing a subset of six lassi�ers from the total of eight differ-ent lassi�ers reated. Four of the member lassi�ers werebased on stroke-by-stroke distanes between the given har-ater and prototypes. Dynami Time Warping (DTW) wasused to ompute one of two distanes, point-to-point (PP)or point-to-line (PL) [7℄. The PP distane uses the squaredEulidean distane between two data points as the ost fun-tion. In the PL distane the points of a stroke are mathed tolines interpolated between the suessive points of the op-posite stroke. All harater samples were saled so that thelength of the longer side of their bounding box was normal-ized and the aspet ratio kept unhanged. Also the entersof the harater, de�ned either as the input sample's massenter (MC) or as the enter of the sample's bounding box(BBC), were moved to the origin. These lassi�ers are the�rst four in Table 1.Two Support Vetor Mahine (SVM) -based lassi�erswere reated so that the on-line haraters were �rst mappedinto bitmaps. The bounding box was �rst identi�ed forevery harater and saled into a normalized box. Theharater bitmap image was onstruted by thikening thelines and reating high resolution 400 � 400 binary im-ages. After applying a down-sampling proedure, the re-sulting gray-level harater bitmaps of size 20 � 20 werereated. The bitmaps were then staked olumn-wise into400-dimensional vetors and their projetions onto 64 prin-ipal omponentswere used as features. The SVM lassi�erwas applied to lassify the obtained features by onstrut-ing binary lassi�ers, eah one separating one lass fromthe rest. The deomposition priniple implemented in [6℄



Table 1. Member lassi�er ratesClassi�er Distane measure Errors1 DTW-PP-MC 10.9%2 DTW-PL-MC 11.5%3 DTW-PP-BBC 12.2%4 DTW-PL-BBC 13.6%5 SVM-Gaussian 21.8%6 SVM-Polynomial 22.6%7 DTW-NPP-MC 12.3%8 DTW-NPP-BBC 13.4%was used to train the SVMs in the experiments [2℄. TheSVM lassi�ers an be found on lines 5 and 6 in Table 1.We did experiments to evaluate the bene�t of having di-verse lassi�ers, i.e., using the two SVM-based lassi�ersin addition to the DTW-based lassi�ers. In the experi-ments the two SVM-based lassi�ers were replaed withtwo additional DTW-lassi�ers, so the ommittee onsistedof six different DTW-lassi�ers. These last two also usethe same preproessing as explained above, but a distanemeasure alled the normalized point-to-point (NPP) dis-tane [7℄. This measure is very similar to the point-to-pointdistane but with the addition of normalizing the alulatedost by the number of mathings performed. These lassi-�ers are on lines 7 and 8 in Table 1.5 ExperimentsThe data used in the experiments were isolated on-lineharaters olleted on a Silion Graphis workstation us-ing a Waom Artpad II tablet. The data was stored inUNIPEN format. The preproessing is overed in detailin [7℄. The databases are summarized in Table 2. Thedatabases onsisted of haraters by entirely different writ-ers. Only lower ase letters and digits were used in the ex-periments. Database 1 onsists of haraters written with-out any visual feedbak. The a priori probabilities of thelasses were somewhat similar to that of the Finnish lan-guage. Databases 2 and 3 were olleted with a programthat showed the pen trae on the sreen and reognized theharaters on-line. The distribution of the harater lasseswas approximately even.Database 1 was used for forming the initial user-independent member lassi�ers. The prototype set for theDTW-based lassi�ers onsisted of 7 prototypes per lass,and the SVM extrated a total of approximately 6000 sup-port vetors. Database 2 was used for evaluating somegeneral numeri parameters for the CCCC ommittee anddetermining the performane rankings of the lassi�ers.Database 3 was used as a test set.

Table 2. Summary of the databases usedDatabase Writers Charaters (a-z,0-9)DB1 22 � 10 400 8461DB2 8 � 8 100 4643DB3 8 � 8 100 4626Table 3. Effets of CCCC omponentsAverage BestDistribution/Deision error% error%Triangular kernel distribution 11.2 8.4Gaussian kernel distribution 14.7 9.3Non-parametri distribution 18.1 8.3Nearest neighbor �distribution� 18.4 8.0Gaussian distribution 19.1 8.4MCBL deision 15.2 8.5MCBL-vote deision 15.3 8.0Maximum on�dene deision 16.6 9.7Weighted voting deision 17.7 9.36 ResultsThe results for the CCCC on�gurations have been ob-tained by using the �rst six member lassi�ers fromTable 1.The ommittees were implemented and run in bath mode:on-line operation was simulated by taking data in its origi-nal order and disallowing reiteration. The error rates havebeen alulated over all haraters for all writers. All adap-tive ommittee lassi�ers were reset in between writers forwriter-dependent operation.The most effetive ombination for the CCCC shemeseems to be to use the nearest-neighbor on�dene modelalong with the MCBL-voting-deision mehanism, as anbe seen from the best results olumn in Table 3. Thisombination provides an error rate of 8.0%.Also several less fundamental options were experi-mented with. They inluded the possibility of using theseond-ranking result if the �rst-ranked result from the las-si�er had low on�dene, learning only on the ommitteeserrors, repeatedly inserting samples into the distributionsto enhane learning effets, adjusting the on�denes withrun-time reognition rates and not aepting results withnegative on�denes. But due to spae onerns the re-porting has been omitted here, as their signi�ane to themethod was muh lower.The effets of the individual omponents were evaluatedby averaging over all the runs with a partiular option inuse. The best error perentages orrespond to the best runusing the omponent. The averages presented in the tables



have been alulated over all ombinations of the options,resulting in notably low average rates due to some absurdombinations that result in very high error rates. Table 3shows that in general the kernel-funtion-based distribu-tion estimates do perform better, with the triangular kernelfuntion performing on the average the best. The differ-ene between using the non-parametri distribution and thenearest-neighbor approah is quite small. The use of oneGaussian seems to be insuf�ient. But looking at the lowesterror rates, the piture is quite different with the nearest-neighbor approah performing the best, followed by thenon-parametri, triangular kernel and simple Gaussian dis-tributions, and the Gaussian kernel being learly the worst.Table 3 also shows that the MCBL deision mehanismapplied to the on�denes obtained from the ritis pro-dues learly the best results. The differene between us-ing the single maximum or voting variation is very small,but the MCBL variation of seleting the single largest on-�dene is on the average slightly better than its ounterpartbased on weighted voting and the MCBL-vote approahproduing the best individual result. The weighted votingapproah seems to be inferior to just hoosing the resultwith the best on�dene. But the best single result from thetwo deision mehanisms not based on MCBL is reeivedthrough the voting-based approah.The results of the ommittees are ompared in the middleolumn of Table 4. Also the result from the best individualmember lassi�er and the average of members are shown.The CCCC ommittee outperforms all the other methodsused. The voting approahes perform better than the adjust-ing best approah, the only one unable to outperform all itsmembers. The adjusting plurality voting is able to performslightly better than the basi voting sheme.An additional experiment was run to evaluate the ben-e�ts of having the SVM-based lassi�ers, whih produeworse results but also different errors than those based onDTW, used in the ommittees. To evaluate their bene�t,experiments were run also using only DTW-based ommit-tee lassi�ers. For these omparison experiments the twoSVM-based member lassi�ers 5 and 6 in Table 1 were re-plaedwith the DTW-basedmember lassi�ers 7 and 8. Theresults are in the last olumn of Table 4. As an be seen,espeially the more advaned CCCC ombination methodbene�ts notably from having the more diverse set of mem-ber lassi�ers, even though the average error rate over themember lassi�ers is learly higher. The plurality votingapproahes also bene�t from the diversity, as an be seen inthe slight inreases in error perentages when moving to all-DTW member lassi�ers. On the other hand the adjustingbest sheme is more dependent on having well-performingmember lassi�ers than on anything else. As suh it bene-�ts from having more similar member lassi�ers with lowerindividual error rates.

Table 4. Comparison of adaptive ommitteesError % Error %Combination method DTW& SVM all DTWCCCC 8.0 9.3Adjusting Plurality Voting 10.1 10.3Plurality Voting 10.2 10.4Adjusting Best 11.4 11.3Best member lassi�er 10.9 10.9Member lassi�er average 15.4 12.37 ConlusionsThe experiments regarding adaptive CCCC ommitteehave shown notable improvements in performane over anyof the individual members. The CCCC approah using anearest-neighbor distribution and the MCBL-vote deisionrule was the most effetive ombination of the ones tested.It is also lear from the results that ombining more diversemember lassi�ers is bene�ial, even if some of the mem-bers by themselves performworse. The most important fa-tor is that the member lassi�ers should not make the samemistakes, as the situations where the member lassi�ers allsuggest a single inorret result is the most dif�ult one toorret.Referenes[1℄ H. Druker, R. Shapire, and P. Simard. Boosting perfor-mane in neural networks. International Journal of PatternReognition and Arti�ial Intelligene, 7(4):705�719, 1993.[2℄ R. Girdziu�sas. Disriminative on-line reognition of isolatedhandwritten harater. Master's thesis, Helsinki University ofTehnology, 2001.[3℄ Y. Huang and C. Suen. A method of ombining multiple ex-perts for the reognition of unonstrained handwritten numer-als. IEEE Transations on Pattern Analysis and Mahine In-telligene, 17(1):90�94, 1995.[4℄ D. Miller and L. Yan. Criti-driven ensemble lassi�ation.IEEE Transations on Signal Proessing, 47(10):2833�2844,1999.[5℄ S. J. Russell and P. Norvig. Arti�ial Intelligene: A ModernApproah. Prentie Hall, 1995.[6℄ A. Shwaighofer. SVM toolbox for Matlab (version v0.4).http://svm.�rst.gmd.de/, May 2001.[7℄ V. Vuori, J. Laaksonen, E. Oja, and J. Kangas. Experimentswith adaptation strategies for a prototype-based reognitionsystem of isolated handwritten haraters. International Jour-nal of Doument Analysis and Reognition, 3(2):150�159,2001.[8℄ B. Xiao and C. W. nd R.W. Dai. Adaptive ombination oflassi�ers and its appliation to handwritten hinese haraterreognition. In Proeedings of the 15th International Confer-ene on Pattern Reognition, volume 2, pages 327�330, 2000.


