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omAbstra
tThis paper dis
usses a 
ombination of two te
hniques forimproving the re
ognition a

ura
y of on-line handwritten
hara
ter re
ognition: 
ommittee 
lassi�
ation and adap-tation to the user. A novel adaptive 
ommittee stru
ture,namely the Class-Con�den
e Criti
 Combination (CCCC)s
heme, is presented and evaluated. It is shown to be ableto improve signi�
antly on its member 
lassi�ers. Also theeffe
t of having either more or less diverse sets of member
lassi�ers is 
onsidered.1 Introdu
tionIn on-line handwriting re
ognition the 
lassi�er or 
las-si�ers must be 
apable of pro
essing natural handwritingat high a

ura
ies for the appli
ation to be 
omfortable forthe user. In
luding the vast amount of intrinsi
 variation inhandwriting in the initial 
hara
ter models is often impossi-ble, or at least very impra
ti
al. Thus adaptation is a feasi-ble or even an unavoidable way of improving performan
eon any user-dependent handwriting re
ognition system.Combining several different 
lassi�ers in a 
ommitteeform is another way to rea
h for the best attainable re
og-nition performan
e. Combining the results of several 
las-si�ers 
an improve performan
e be
ause in the outputs ofthe individual 
lassi�ers the errors are not ne
essarily over-lapping. Committee methods generally require more thanone member 
lassi�er to re
ognize the input. In on-linehandwritten 
hara
ter re
ognition, this is not 
omputation-ally too 
omplex for even the smallest platforms due to the
ontinuous in
rease in available 
omputational power. The

basi
 operation of a 
ommittee 
lassi�er is to take the re-sults of a set of member 
lassi�ers and attempt to 
om-bine them in a way that improves performan
e. The twomost important features of the member 
lassi�ers that af-fe
t the 
ommittee's performan
e are the individual errorrates of the member 
lassi�ers and the 
orrelatedness of theerrors. The more different the mistakes made by the 
lassi-�ers, the more bene�
ial 
ombining them 
an be. Numer-ous 
ommittee stru
tures have re
ently gained attention, forexample boosting [1℄ and 
riti
-driven 
ombining [4℄. TheBehavior-Knowledge Spa
e (BKS) method [3℄ is based on aK-dimensional dis
rete knowledge spa
e that is used to de-termine the 
lass labels based on previously stored de
isioninformation.Though the adaptation is usually performed by adapt-ing a single 
lassi�er to the training data, it is also possibleto 
onstru
t a 
ommittee that is adaptive as a whole. Themembers of an adaptive 
ommittee 
an be adaptive or non-adaptive themselves. One adaptive 
lassi�er 
ombinationstrategy is to 
ombine the member 
lassi�ers linearly usingweighting 
oef�
ients dynami
ally a
quired from a 
ombi-nation 
oef�
ient predi
tor [8℄. We present here an adaptive
ommittee 
lassi�
ation s
heme based on 
riti
s evaluatingthe trustworthiness of the members. The te
hnique is namedClass-Con�den
e Criti
 Combining (CCCC).2 Class-Con�den
e Criti
 CombiningGenerally, a 
riti
-based approa
h is one in whi
h a sep-arate expert makes a de
ision on whether the 
lassi�er itis examining is 
orre
t or not. Criti
-driven approa
hesto 
lassi�er 
ombining have been investigated previously,e.g. in a situation where the 
riti
 makes its de
ision based
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Figure 1. Stru
ture of the CCCC 
ommitteeon the same input data as the 
lassi�er [4℄. In our Class-Con�den
e Criti
 Combining (CCCC) approa
h the mainidea is to try to produ
e as good as possible an estimate onthe 
lassi�er's 
orre
tness based on its prior behavior forthe same 
hara
ter 
lass.In CCCC the 
orre
tness evaluation results in a 
on�-den
e value whi
h is based on the earlier performan
e ofthe 
lassi�er for the same 
hara
ter 
lass. There are two dis-tan
e distributions for ea
h 
lass stored in ea
h 
riti
. One
orresponds to 
orre
t 
lassi�
ation results and the otherone to in
orre
t results. This is illustrated in Figure 1. Ea
htime a new 
hara
ter x is pro
essed, it is 
lassi�ed by allmember 
lassi�ers and the 
on�den
es of the 
lassi�
ationare 
al
ulated in ea
h 
riti
. Two opposing 
on�den
es areestimated in ea
h 
riti
, one for the 
orre
tness and the otherfor the in
orre
tness of the 
lassi�
ation. The 
on�den
esin the label 
k(x) from 
lassi�er k are based on the distri-bution of a distan
e-indi
ating value dk(x). For 
al
ulatingthe dk(x) value we need to know the distan
es from the in-put x to the nearest prototypes, dk1(x) and dk2(x), 
al
ulatedfor the nearest and se
ond-nearest 
lass, respe
tively. In the
ase that the 
lassi�er is not based on distan
es, we mayuse another analogous measure that de
reases as similarityin
reases. The value dk(x) 
an be obtained by taking theratio between the distan
e to the �rst result dk1(x) and thesum of the �rst and se
ond result distan
es,dk(x) = dk1(x)dk1(x) + dk2(x) 2 [0; 12℄: (1)

Or, we may use dire
tly the distan
e to the nearest prototype
al
ulated by the 
lassi�er,dk(x) = dk1(x) 2 [0;1): (2)The 
ommittee then uses one of the de
ision me
hanismsspe
i�ed in Se
tion 2.3 to produ
e the �nal output from theinput label information and 
riti
 
on�den
e values qk(x)
al
ulated from the 
on�den
es for dk(x).The adaptation of the 
riti
s, in pra
ti
e the modi�
a-tion of the distributions, is performed assuming that it isknown whether the re
ognition result was 
orre
t or in
or-re
t. The dk(x) values re
eived from the member 
lassi�ersare in
orporated into the 
orresponding 
riti
's appropriatedistribution, depending on the suggested 
lass and the 
or-re
tness of the result. In pra
ti
e this is done by appendingthe new dk(x) value to the list of values for that distributionand re
al
ulating the parameters needed for presenting thedistribution.2.1 Distribution typesIn order to obtain the 
on�den
es for the de
isions basedon previous results, the re
eived dk(x) values must besomehow modeled. The approa
h of gathering previousvalues into distributions from whi
h the value for the 
on-�den
e 
an be obtained has been 
hosen for this task. Thenotation used is that ea
h distribution i, where the shorthanddistribution index i runs over both 
orre
t and in
orre
t dis-tributions for ea
h 
lass 
 in ea
h member 
lassi�er k, 
on-tains N i previously 
olle
ted values zij ; j = 1; : : : ; N i.The notation for the 
on�den
e obtained from the distri-bution i stands as pi(dk(x)). For shortening the notationfurther, we shall use dk(x) = z.Gaussian normal distribution: The Gaussian normaldistribution is used by 
al
ulating the mean and varian
efrom the already obtained samples and then 
al
ulating thevalues of a Gaussian normal distribution,pigaussian(z) = 1p2��i e� (z��i)22�2i ; (3)where�i is the mean and �2i the varian
e for the distributioni. Initial values are used for the mean when no samples existand for the varian
e when less than two samples have beenre
eived for the parti
ular distribution.Non-parametri
 distribution: The non-parametri
model is based on 
al
ulating the number of points in thedistribution that are further from the mean of the distribu-tion �i;k than the value for the input z, i.e. nf (z; i) =PNij=1 v(z; i; j), where v(z; i; j) = 1 if jz��ij < jzij ��ijand zero otherwise. The 
on�den
e is then based on the ra-tio between nf (z; i) and the total number of points in the



distributionN i so thatpinonparam(z) = nf (z; i)N i : (4)Nearest neighbor approa
h: The nearest neighbor(NN) approa
h is not really a distribution, but the nearestneighbor rule is used in the sense of 
al
ulating the distan
edimin(z) = minNij=1 jz � zij j from the input value z to thenearest value already in the distribution i.This is then usedwith the largest attainable distan
e dimax to 
reate a measureof 
on�den
e, piNN(z) = 1� dimin(z)dimax : (5)If equation (1) is used, dimax = 0:5. When equation (2) isused, dimax is taken to be the largest value observed.Triangular kernel distribution estimate: This distri-bution estimate uses a triangular kernel fun
tion, de�ned bythe peak bandwidth b, whi
h is given as a parameter. Theestimate 
an be 
al
ulated by applying a kernel over all datapoints zij in the distribution i and normalizing by the num-ber of points N i. Be
ause b is independent of the distribu-tion and 
riti
, there is no need to take it into a

ount in thenormalization;pitrikernel(z) = 1N i NiXj=1max f0; 1b (b� jz � zij j)g: (6)Gaussian kernel distribution estimate: The distribu-tion is estimated through the use of a Gaussian fun
tion asthe kernel. The kernel bandwidth b is used as the varian
efor the Gaussian. The evaluation of the distributions' valuesat spe
i�
 points is performed as for the triangular kernel,pigausskernel(z) = 1N i NiXj=1 e� (z�zij)22b : (7)2.2 Combining 
on�den
e valuesThe overall 
on�den
e qk(x) given by 
riti
 k to the
lassi�
ation result 
k(x) of 
lassi�er k is obtained from the
orre
t and in
orre
t 
lassi�
ation result distribution 
on�-den
es p
orre
t(dk(x)) and pin
orre
t(dk(x)), respe
tively, ei-ther by subtra
ting them from one another, whereqk(x) = p
orre
t(dk(x))� pin
orre
t(dk(x)); (8)or by using just the 
on�den
e from the 
orre
t distributionas the overall 
on�den
e,qk(x) = p
orre
t(dk(x)): (9)It should be noted that (8) may produ
e also negative 
on�-den
es indi
ating that the result from that member 
lassi�eris expe
ted to be in
orre
t.

2.3 De
ision me
hanismsAs the 
ommittee now has label information from themember 
lassi�ers and the 
orresponding 
on�den
e val-ues from the 
riti
s to work with, a s
heme is needed for
ombining them into a �nal result. The de
ision s
hemestake the labels 
k(x) for the input samples x from 
lassi-�ers k and the 
orresponding 
riti
s' 
on�den
es qk(x) toform the de
ision.Maximum 
on�den
e sele
tion: The de
ision is madeby sele
ting the result whose 
riti
 has the highest 
on�-den
e, 
(x) = 
j(x); j = arg Kmaxk=1 qk(x): (10)Con�den
e-weighted majority voting: Weighted ma-jority voting is performed with the 
on�den
es as theweights. With the use of the 
on�den
es, the majority vot-ing s
heme is modi�ed to assigning
(x) = arg Cmax
=1 KXk=1 qk(x)�
k ; (11)whereC is the total number of 
lasses andK the number ofre
ognizers. �
k = 1 when the result from the 
lassi�er kis the 
lass 
 and zero otherwise.Modi�ed Current-Best-Learning de
ision: TheCurrent-Best-Learning (CBL) algorithm [5℄ is originally aframework for learning general logi
al des
riptions. Thisis a

omplished through maintaining a single hypothesisand adjusting it as new examples arrive. Operations knownas generalization and spe
ialization are used to adjustthe 
urrent hypothesis so that the resulting hypothesis is
onsistent with all the examples.The algorithm used here has grown quite far from thatinitial idea, but as the resemblan
e is still evident, it ishere 
alled the Modi�ed Current-Best-Learning (MCBL)approa
h. If one interprets CBL as a method of 
ombining
lassi�ers, the system 
an be viewed as a two-dimensionalgrid, with ea
h 
olumn representing a member 
lassi�er andea
h row 
orresponding to a parti
ular 
lass. The valuesstored in the grid are estimates for the 
on�den
e of a mem-ber 
lassi�er's de
ision if it 
lassi�es an input in that parti
-ular 
lass. Spe
ialization and generalization then give riseto 
hanging the 
on�den
e values.When forming the 
lass-wise MCBL 
on�den
e val-ues, one uses the 
on�den
es obtained from the 
riti
s,qk(x). By 
ombining them into 
lass-wise 
on�den
e val-ues fk(
k(x)), where k is the index of the 
lassi�er and
k(x) the 
lass suggested by that 
lassi�er for the input x, atable 
onsisting of ea
h 
lassi�er's 
lassi�
ation result andits 
on�den
e 
an be formed. To modify the hypothesis,the values fk(
k(x)) are adjusted when the 
ommittee as a



whole is in
orre
t. When any individual 
lassi�er k of the
ommittee members is 
orre
t, the qk(x) value is added tothe 
on�den
e of the 
lass for that 
lassi�er. On the otherhand, when a 
lassi�er produ
es an in
orre
t result, its 
on-�den
e for that 
lass is multiplied with the value qk(x). Themodi�
ations 
an thus be formulated as8k 2 f1; : : : ;Kg :fk(
k(x)) := ( fk(
k(x)) + qk(x); if 
k(x) 
orre
tfk(
k(x)) � qk(x) ; otherwise.(12)When the 
ommittee produ
es a 
orre
t result, the 
ur-rent hypothesis has been effe
tive and no 
hanges are made.Due to the on-line nature of the adaptation, no ba
ktra
kingis performed and ea
h sample is pro
essed only on
e. The
on�den
e values 
an be initialized as the inverse of the or-dering of the 
lassi�ers a

ording to their de
reasing re
og-nition performan
e, ie. fk(!j) = 1k for all 
lassi�ers k and
lass labels !j .Prior to the �nal de
ision, the obtained 
on�den
es werestill modi�ed by joining the 
riti
's 
urrent 
on�den
e valueinto the obtained MCBL 
on�den
e value by using thetransformation of equation (12). As the 
orre
tness is notknown at this point, the sele
tion is made based on whetherthe 
riti
 believes the member to be 
orre
t (qk(x) > 0)or not. This last step should be bene�
ial when the 
riti
sdire
tly produ
e suf�
iently a

urate 
on�den
e estimates.This modi�
ation s
heme was used as it was the onefound to produ
e the best results from a number of s
hemesexperimented with. For the �nal de
ision from the MCBL
on�den
e values, both the original s
heme sele
ting theresult based on the maximum value as in equation (10) anda s
heme using the weighted majority voting approa
h ofequation (11) were experimented with.3 Referen
e 
ommittee 
lassi�ersTo evaluate the results of the CCCC 
ommittee, someruns with referen
e 
ommittee 
lassi�ers have also been
arried out. They in
lude the standard plurality voting, ad-justing plurality voting, and adjusting best approa
hes.Plurality voting 
ommittee: The �rst referen
e 
om-mittee simply uses the plurality voting rule to de
ide the�nal output. In the 
ase of a tie the approa
h of iterativelydropping the 
lassi�er with the lowest 
orre
tness rankingand revoting was used.Adjusting plurality voting 
ommittee: A simple ap-proa
h to adaptive 
ommittee de
isions is to use a weightedvariation of the original plurality voting rule. Adapta-tion was implemented by introdu
ing weights based on anevaluation of 
orre
tness for ea
h voting 
lassi�er, wherewk = 1+Nk
1+PKj=1 Nj
 is the weight for the output and Nk
 is

the 
urrent 
ount of 
orre
t re
ognitions for the 
lassi�erk, andK is the total number of 
lassi�ers. The addition ofone in both the nominator and denominator is made to avoidboth zero weights and divisions by zero. The �nal plural-ity voting de
ision is obtained as in equation (11), with theweights wk repla
ing the 
on�den
es qk(x).Adjusting best 
ommittee: In the adjusting best 
om-mittee the main idea is to sele
t the best 
lassi�er forea
h individual writer by evaluating ea
h 
lassi�er's perfor-man
e during operation and using the result from the 
lassi-�er that has performed the best up to that time. The perfor-man
e evaluation is 
ondu
ted by simply keeping tra
k of
orre
t results obtained from ea
h 
lassi�er. At any giventime the 
ommittee's de
ision is thus the result from the
lassi�er with the highest 
orre
t answer 
ount at that point,
(x) = 
j(x), where j = argmaxKk=1Nk
 , with Nk
 beingthe 
urrent 
ount of 
orre
t re
ognitions for 
lassi�er k and
k(x) the 
lass suggested by that 
lassi�er. In the 
ase of adraw, the result from the higher-ranked 
lassi�er is used.4 Member 
lassi�ersThe adaptive 
ommittee experiments were performed us-ing a subset of six 
lassi�ers from the total of eight differ-ent 
lassi�ers 
reated. Four of the member 
lassi�ers werebased on stroke-by-stroke distan
es between the given 
har-a
ter and prototypes. Dynami
 Time Warping (DTW) wasused to 
ompute one of two distan
es, point-to-point (PP)or point-to-line (PL) [7℄. The PP distan
e uses the squaredEu
lidean distan
e between two data points as the 
ost fun
-tion. In the PL distan
e the points of a stroke are mat
hed tolines interpolated between the su

essive points of the op-posite stroke. All 
hara
ter samples were s
aled so that thelength of the longer side of their bounding box was normal-ized and the aspe
t ratio kept un
hanged. Also the 
entersof the 
hara
ter, de�ned either as the input sample's mass
enter (MC) or as the 
enter of the sample's bounding box(BBC), were moved to the origin. These 
lassi�ers are the�rst four in Table 1.Two Support Ve
tor Ma
hine (SVM) -based 
lassi�erswere 
reated so that the on-line 
hara
ters were �rst mappedinto bitmaps. The bounding box was �rst identi�ed forevery 
hara
ter and s
aled into a normalized box. The
hara
ter bitmap image was 
onstru
ted by thi
kening thelines and 
reating high resolution 400 � 400 binary im-ages. After applying a down-sampling pro
edure, the re-sulting gray-level 
hara
ter bitmaps of size 20 � 20 were
reated. The bitmaps were then sta
ked 
olumn-wise into400-dimensional ve
tors and their proje
tions onto 64 prin-
ipal 
omponentswere used as features. The SVM 
lassi�erwas applied to 
lassify the obtained features by 
onstru
t-ing binary 
lassi�ers, ea
h one separating one 
lass fromthe rest. The de
omposition prin
iple implemented in [6℄



Table 1. Member 
lassi�er ratesClassi�er Distan
e measure Errors1 DTW-PP-MC 10.9%2 DTW-PL-MC 11.5%3 DTW-PP-BBC 12.2%4 DTW-PL-BBC 13.6%5 SVM-Gaussian 21.8%6 SVM-Polynomial 22.6%7 DTW-NPP-MC 12.3%8 DTW-NPP-BBC 13.4%was used to train the SVMs in the experiments [2℄. TheSVM 
lassi�ers 
an be found on lines 5 and 6 in Table 1.We did experiments to evaluate the bene�t of having di-verse 
lassi�ers, i.e., using the two SVM-based 
lassi�ersin addition to the DTW-based 
lassi�ers. In the experi-ments the two SVM-based 
lassi�ers were repla
ed withtwo additional DTW-
lassi�ers, so the 
ommittee 
onsistedof six different DTW-
lassi�ers. These last two also usethe same prepro
essing as explained above, but a distan
emeasure 
alled the normalized point-to-point (NPP) dis-tan
e [7℄. This measure is very similar to the point-to-pointdistan
e but with the addition of normalizing the 
al
ulated
ost by the number of mat
hings performed. These 
lassi-�ers are on lines 7 and 8 in Table 1.5 ExperimentsThe data used in the experiments were isolated on-line
hara
ters 
olle
ted on a Sili
on Graphi
s workstation us-ing a Wa
om Artpad II tablet. The data was stored inUNIPEN format. The prepro
essing is 
overed in detailin [7℄. The databases are summarized in Table 2. Thedatabases 
onsisted of 
hara
ters by entirely different writ-ers. Only lower 
ase letters and digits were used in the ex-periments. Database 1 
onsists of 
hara
ters written with-out any visual feedba
k. The a priori probabilities of the
lasses were somewhat similar to that of the Finnish lan-guage. Databases 2 and 3 were 
olle
ted with a programthat showed the pen tra
e on the s
reen and re
ognized the
hara
ters on-line. The distribution of the 
hara
ter 
lasseswas approximately even.Database 1 was used for forming the initial user-independent member 
lassi�ers. The prototype set for theDTW-based 
lassi�ers 
onsisted of 7 prototypes per 
lass,and the SVM extra
ted a total of approximately 6000 sup-port ve
tors. Database 2 was used for evaluating somegeneral numeri
 parameters for the CCCC 
ommittee anddetermining the performan
e rankings of the 
lassi�ers.Database 3 was used as a test set.

Table 2. Summary of the databases usedDatabase Writers Chara
ters (a-z,0-9)DB1 22 � 10 400 8461DB2 8 � 8 100 4643DB3 8 � 8 100 4626Table 3. Effe
ts of CCCC 
omponentsAverage BestDistribution/De
ision error% error%Triangular kernel distribution 11.2 8.4Gaussian kernel distribution 14.7 9.3Non-parametri
 distribution 18.1 8.3Nearest neighbor �distribution� 18.4 8.0Gaussian distribution 19.1 8.4MCBL de
ision 15.2 8.5MCBL-vote de
ision 15.3 8.0Maximum 
on�den
e de
ision 16.6 9.7Weighted voting de
ision 17.7 9.36 ResultsThe results for the CCCC 
on�gurations have been ob-tained by using the �rst six member 
lassi�ers fromTable 1.The 
ommittees were implemented and run in bat
h mode:on-line operation was simulated by taking data in its origi-nal order and disallowing reiteration. The error rates havebeen 
al
ulated over all 
hara
ters for all writers. All adap-tive 
ommittee 
lassi�ers were reset in between writers forwriter-dependent operation.The most effe
tive 
ombination for the CCCC s
hemeseems to be to use the nearest-neighbor 
on�den
e modelalong with the MCBL-voting-de
ision me
hanism, as 
anbe seen from the best results 
olumn in Table 3. This
ombination provides an error rate of 8.0%.Also several less fundamental options were experi-mented with. They in
luded the possibility of using these
ond-ranking result if the �rst-ranked result from the 
las-si�er had low 
on�den
e, learning only on the 
ommitteeserrors, repeatedly inserting samples into the distributionsto enhan
e learning effe
ts, adjusting the 
on�den
es withrun-time re
ognition rates and not a

epting results withnegative 
on�den
es. But due to spa
e 
on
erns the re-porting has been omitted here, as their signi�
an
e to themethod was mu
h lower.The effe
ts of the individual 
omponents were evaluatedby averaging over all the runs with a parti
ular option inuse. The best error per
entages 
orrespond to the best runusing the 
omponent. The averages presented in the tables



have been 
al
ulated over all 
ombinations of the options,resulting in notably low average rates due to some absurd
ombinations that result in very high error rates. Table 3shows that in general the kernel-fun
tion-based distribu-tion estimates do perform better, with the triangular kernelfun
tion performing on the average the best. The differ-en
e between using the non-parametri
 distribution and thenearest-neighbor approa
h is quite small. The use of oneGaussian seems to be insuf�
ient. But looking at the lowesterror rates, the pi
ture is quite different with the nearest-neighbor approa
h performing the best, followed by thenon-parametri
, triangular kernel and simple Gaussian dis-tributions, and the Gaussian kernel being 
learly the worst.Table 3 also shows that the MCBL de
ision me
hanismapplied to the 
on�den
es obtained from the 
riti
s pro-du
es 
learly the best results. The differen
e between us-ing the single maximum or voting variation is very small,but the MCBL variation of sele
ting the single largest 
on-�den
e is on the average slightly better than its 
ounterpartbased on weighted voting and the MCBL-vote approa
hprodu
ing the best individual result. The weighted votingapproa
h seems to be inferior to just 
hoosing the resultwith the best 
on�den
e. But the best single result from thetwo de
ision me
hanisms not based on MCBL is re
eivedthrough the voting-based approa
h.The results of the 
ommittees are 
ompared in the middle
olumn of Table 4. Also the result from the best individualmember 
lassi�er and the average of members are shown.The CCCC 
ommittee outperforms all the other methodsused. The voting approa
hes perform better than the adjust-ing best approa
h, the only one unable to outperform all itsmembers. The adjusting plurality voting is able to performslightly better than the basi
 voting s
heme.An additional experiment was run to evaluate the ben-e�ts of having the SVM-based 
lassi�ers, whi
h produ
eworse results but also different errors than those based onDTW, used in the 
ommittees. To evaluate their bene�t,experiments were run also using only DTW-based 
ommit-tee 
lassi�ers. For these 
omparison experiments the twoSVM-based member 
lassi�ers 5 and 6 in Table 1 were re-pla
edwith the DTW-basedmember 
lassi�ers 7 and 8. Theresults are in the last 
olumn of Table 4. As 
an be seen,espe
ially the more advan
ed CCCC 
ombination methodbene�ts notably from having the more diverse set of mem-ber 
lassi�ers, even though the average error rate over themember 
lassi�ers is 
learly higher. The plurality votingapproa
hes also bene�t from the diversity, as 
an be seen inthe slight in
reases in error per
entages when moving to all-DTW member 
lassi�ers. On the other hand the adjustingbest s
heme is more dependent on having well-performingmember 
lassi�ers than on anything else. As su
h it bene-�ts from having more similar member 
lassi�ers with lowerindividual error rates.

Table 4. Comparison of adaptive 
ommitteesError % Error %Combination method DTW& SVM all DTWCCCC 8.0 9.3Adjusting Plurality Voting 10.1 10.3Plurality Voting 10.2 10.4Adjusting Best 11.4 11.3Best member 
lassi�er 10.9 10.9Member 
lassi�er average 15.4 12.37 Con
lusionsThe experiments regarding adaptive CCCC 
ommitteehave shown notable improvements in performan
e over anyof the individual members. The CCCC approa
h using anearest-neighbor distribution and the MCBL-vote de
isionrule was the most effe
tive 
ombination of the ones tested.It is also 
lear from the results that 
ombining more diversemember 
lassi�ers is bene�
ial, even if some of the mem-bers by themselves performworse. The most important fa
-tor is that the member 
lassi�ers should not make the samemistakes, as the situations where the member 
lassi�ers allsuggest a single in
orre
t result is the most dif�
ult one to
orre
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