
Rejetion methods for an adaptive ommittee lassi�erMatti Aksela1;2, Jorma Laaksonen1, Erkki Oja1Helsinki University of TehnologyNeural Networks Researh CentreP.O.Box 5400, Fin-02015 HUT, Finlandfmatti.aksela,jorma.laaksonen,erkki.ojag�hut.� Jari KangasNokia Researh CenterP.O.Box 100, Fin-33721 Tampere, Finlandjari.a.kangas�nokia.omAbstratAdaptation is an effetive method for improving lassi�-ation auray and a ommittee struture an in generalimprove on its members' performane. Therefore an adap-tive ommittee struture is a tempting approah. Rejetionmay be used in handwriting reognition to improve perfor-mane through either direting the problemati haraterto a speial lassi�er that handles suh hard ases or dis-arding it. The experiments in this paper ompare severalfundamentally different approahes to implementing reje-tion in an adaptive ommittee lassi�er. A DynamiallyExpanding Context (DEC) - based ommittee is used forevaluating these approahes. The results show that if therejeted lasses are handled with a 50% error rate, the per-formane is improved. A sheme in whih there is an ad-justable threshold for distane-based rejetion is an effe-tive method for implementing rejetion in this setting.1 IntrodutionIn lassi�ation it is a ommon approah to use a setof referene samples to math the input sample against. Ifthere is signi�ant variation, having a large enough numberof referene samples may quikly beome impratial oreven impossible. In suh ases lassi�er adaptation is aneffetive method for improving performane.Another approah to improve reognition performane isto ombine different lassi�ers in a ommittee. This is fea-sible beause in the outputs of several lassi�ers the errorsare not neessarily overlapping. Although the most om-mon way of adaptation is to adapt a single reognizer, it1Aknowledgement: This researh was partly �naned by the projetNew Information Proessing Priniples, Finnish Centre of Exellene Pro-gramme 2000-2005, Aademy of Finland.2Aknowledgement: This researh was partly �naned by a grant fromthe Nokia Foundation.
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Figure 1. A shemati diagram of rejetion toa seondary lassi�er.is also possible to onstrut a ommittee that as a whole isadaptive.There are many appliations where reognition errors areto be avoided at all osts. In suh situations the ability fora lassi�er, or a ommittee of lassi�ers, to rejet an inputof whih it is unertain beomes a very desirable property.Rejetion an also be used to diret problemati samples toa separate lassi�er, a rejet handler.As we have previously experimented with adaptive om-mittee strutures, the purpose of this paper is to explore pos-sible rejetion implementations. Some basi reasoning forhoosing an appropriate level of rejetion is onsidered andthe atual methods used are explained and evaluated.2 RejetionIn general, the objetive of rejetion is to detet problem-ati patterns by some means, and refrain from lassifyingthem entirely or rediret them to a rejet handler lassi�er.An example approah is omparing the k nearest neighborsfrom several nearest neighbor lassi�ers and performing re-jetion if they differ [8℄. Rejetion an also be used as theprimary method of lassi�ation through iteratively rejet-ing lasses until only one lass remains as the result [2℄.When the objetive of a system is to produe as manyorret reognitions as possible, the main funtion of reje-tion is to rediret samples with high unertainty to a sep-arate, perhaps speialized, lassi�ation stage. The addi-tion of suh a stage is illustrated in Figure 1. Let r be the



somehow tunable rejetion rate of the initial lassi�er, ora ommittee as is here the ase, e(r) the �rst stage errorrate at the rejetion rate r and er(r) the reognition errorrate for the speialized rejet handler. The orret lassi�-ation rates are (r) and r(r) analogously. We then have(r)+e(r)+r = 1 and r(r)+er(r) = 1. Thus the totalerror rate beomes etot = e(r) + rer(r).The purpose is to rejet samples to be reognized inor-retly, but in pratie usually also some samples that wouldhave been orret are rejeted. If e(r) and er(r) were on-tinuous differentiable, the optimal level of rejetion wouldbe found atddretot= ddr [e(r) + rer(r)℄= ddre(r) + er(r) + r ddrer(r) = 0 (1)In pratie with �nite data, differentiation of the total erroris usually impossible and the optimal rate of rejetion anbe found by �nding the value r� = r that minimizes the�nal error rate,r� = argminr [e(r) + rer(r)℄ (2)As the orret perentage loses some intuitive value withits derease as rejetion inreases, a measure of reliability,de�ned as in [11℄, is used for the primary lassi�er.rel(r) = (r)1� r = (r)(r) + e(r) (3)3 Adaptive ommitteeThe basi operation of a ommittee lassi�er is to takethe results of the member lassi�ers and attempt to om-bine them in a way that improves performane. The mem-ber lassi�ers have a signi�ant impat on the �nal perfor-mane of the ommittee. It an generally be said that theless orrelated the errors of the member lassi�ers are, themore effetive the ommittee an be in improving the reog-nition rate.Numerous ommittee strutures have been studied overthe years. They inlude majority voting [7℄, Bayesian ap-proahes and k nearest neighbor ombination methods [8℄,boosting [3℄, lass ranking methods [10℄ and multistageombination [9℄, to name a few.An adaptive ommittee an be thought of as onsistingof two parts. First, every ommittee must have a base dei-sion rule, whih is used when no adaptation has been per-formed. Then, some rule or rules for the adaptation must beinluded. The type of the rules an vary from very simpleweighting shemes to the reation of omplex lists of rulesto determine the ommittee's behavior.One adaptive ommittee used in our work in on-linehandwritten harater reognition is based on the Dynam-ially Expanding Context (DEC) algorithm [5℄. The al-gorithm was originally developed to reate transformation

rules that would orret typial oartiulation effets inphonemi speeh reognition. The notation for a DEC rulestands as l(A)r ! B, where A is a segment of the sourestring S,B is the orresponding segment in the transformedstring T , and l(�)r is the ontext in string S where A ours.So in other words A is replaed by B under the onditionl(�)r. The main idea behind the approah is to determinejust a suf�ient amount of ontext for eah individual seg-ment A so that all on�its in the set of training sampleswill be resolved. The method always �rst tries to �nd a pro-dution of the lowest ontextual level suf�ient to separateontraditory ases.The DEC priniple has been slightly modi�ed to suit thesetting of isolated handwritten harater reognition [6℄. Inthe DEC ommittee, the lassi�ers are �rst initialized andthen tested separately and ranked in the order of dereasingperformane. The primary outputs and the seond-rankingresults of every member lassi�er are used as a one-sidedontext for the reation of the DEC rules. Eah time aharater is input to the system, the existing rules are �rstsearhed through. If no appliable rule is found, the defaultdeision is applied. The lassi�ation result is ompared tothe orret lass. If the reognition was inorret, a newrule is reated. Every new rule that is reated employs moreontextual knowledge, if possible, than the rule ausing theon�it. Eventually the entire ontext available will be usedand more preise rules an no longer be written. For this sit-uation a method for traking the orretness of the rules anbe used and the highest level rule most likely to be orretan be applied.4 Rejetion methods usedWith our ommittee lassi�er struture, the rejetion isimplemented at the ommittee level. The rejetion is in-dependent of the ommittee result, and if rejetion is per-formed, the ommittee does not proess that harater. Theinformation available for performing reognition or reje-tion for an input sample x are the �rst and seond rankinglass labels from eah of a total ofN member lassi�ers andthe distanes to the nearest prototype of both result lasses,di1(x) and di2(x) respetively for every member lassi�er i.The two suggested lasses are always different.The rejetion deision an thus be based on either thelass labels the member lassi�ers suggest or some mea-sure obtainable from omparing the distanes to the nearestprototypes of the two lasses, or both. Also, for some reje-tion methods, external knowledge is introdued in the formof a priori dif�ult lasses to reognize, or lasses havingpreviously aused a notable number of errors.Voting Rejetion (VR) is based on examining the vari-ation within the results from the member lassi�ers. A pa-rameter Tvote is given to determine how many different re-



sults may appear in the member outputs before rejetion isperformed. Thus if the number of different results is Tvoteor less, no rejetion is performed, and with the derease inTvote, rejetion beomes more likely as only that number ofdiffering results are allowed.Distane Rejetion (DR) is performed by omparing the�rst and seond result distanes obtained from all the mem-ber lassi�ers. If the averaged ratiord(x) = 1N NXi=1 di1(x)di1(x) + di2(x) (4)is greater than a given threshold T , rejetion is performed.Learning Distane Rejetion (LDR) works like the ba-si DR approah, but the parameter T is altered based onthe reeived results. For this purpose a step value Tstep,the amount how muh T an be hanged at a time, isgiven. If rejetion was performed even though the resultwould have been orret, the value of T is inreased as inT (t+ 1) = T (t) + Tstep, as unneessary rejetions an beexpeted to beome less frequent with a higher thresholdvalue. On the other hand, if an inorret result was not re-jeted, T is dereased by T (t + 1) = T (t) � Tstep, as insuh a situation it should be expeted that easier rejetionould have helped in preventing the error. Thus rejetedbut orret answers would result in a less strit threshold(less probable rejetion) for the following samples, and notrejeted inorret ones would tighten the threshold (moreprobable rejetion).Knowledge-based rejetion (KR) refers to rejetionbased on a known set of easily onfusable haraters, givento the lassi�er as additional information. In our imple-mentation these onfusion sets are de�ned as the groupsfo;O; 0g, f; Cg, fs; Sg,fx;Xg, fz; Zg and fv; V g. Threealternative approahes are applied, in the order of inreasingtotal rejetion:1. Only the �rst results of the member lassi�ers are on-sidered. If two different members of one onfusiongroup are found, rejetion is performed.2. Both the �rst and seond results from the member las-si�ers are examined. If two different members of oneonfusion group are found, rejetion is performed.3. If the �rst result obtained from any one member las-si�er belongs to the onfusion set, the result is rejetedunless all the member lassi�ers agree on the result.Learning Knowledge-based Rejetion (LKR) keepstrak of lassi�ations that have ourred to eah hara-ter lass and the errors that have been made. If the ratio oferrors and lassi�ations is greater than a given thresholdT , rejetion is performed. The value of T is adjusted dur-ing lassi�ation as with LDR. In this ase the adjustment

Table 1. Summary of the databases.Database Subjets Charaters (a-z,0-9)DB1 22 � 10 400 8461DB2 8 � 8 100 4643is done only towards more rejetion: when rejetion did notour and the result was inorret, the threshold is lowered.It should be noted that for the LDR and LKR methodsthe rejetion rate is not diretly steerable, beause the ad-justment proess attempts to �nd a suitable threshold.Class Rejetion (CR) is the most simple of the appliedrejetion methods and onstitutes of simply disregarding apredetermined set of lasses known to be dif�ult. Thesedif�ult lasses were determined in previous experiments asthose where most errors resulted into. The rejeted lasseswere obtained by using progressively more and more har-aters from the string �nmurhs0ol9adkbefgyv1i�.5 ExperimentsThe ommittee was run in bathmode simulating on-lineoperation by using all samples one in their original order.The DEC rule base was reset for eah writer for writer-dependent adaptation. The rejetion methods were testedby varying the values of their parameters.5.1 Desription of the data setsThe data used in the experiments were isolated on-lineharaters olleted on a Silion Graphis workstation us-ing a Waom Artpad II tablet and stored in UNIPEN for-mat [4℄. The preproessing is overed in detail in [12℄. Thedatabases are summarized in Table 1. Database 1 onsists ofharaters whih were written without any visual feedbak.The pressure level thresholding the measured data into penup and pen down movements was individually set for eahwriter. The a priori probabilities of the lasses were basedon the Finnish language. Database 2 was olleted with aprogram that showed the pen trae on the sreen and re-ognized the haraters on-line. The minimum writing pres-sure for deteting pen down movements was the same forall writers. The distribution of the harater lasses was ap-proximately even.The databases onsisted of different writers. Database 1was used for onstruting the initial user-independent pro-totype set whih onsisted of 7 prototypes for eah lassand database 2 was used as a test set. Only lower ase let-ters and digits, a total of approximately 580 haraters perwriter from database 2, were used as test data in the exper-iments. As only lower-ase letters were used, the effet ofKR is limited to onfusions between the lasses o and 0.



Table 2. Reognition error rates of the fourommittee member lassi�ers.Distane Bounding MassClassi�er measure box enter Errors1 PL � 14.9%2 NPP � 15.1%3 NPP � 18.2%4 PL � 19.6%5.2 Member lassi�ersFor these experiments, four individual lassi�ers wereused as the ommittee members. All the lassi�ers werebased on stroke-by-stroke distanes between the given har-ater and the prototypes. Dynami Time Warping (DTW)was used to ompute one of two distanes, normalizedpoint-to-point (NPP) or point-to-line (PL) [12℄. The NPPdistane simply uses the squared Eulidean distane be-tween two data points as the ost funtion and the total sumis divided by the number of mathings performed. In the PLdistane the points of a stroke are mathed to lines interpo-lated between the suessive points of the opposite stroke.All harater samples are saled so that the length of thelonger side of their bounding box is onstant and the aspetratio is kept unhanged. Also the enters of the harater,de�ned by either the 'Mass enter' as the input sample'smass enter or by 'Bounding box' as the enter of the sam-ple's bounding box, are moved to the origin. The memberlassi�ers were not adaptive. The on�gurations and errorrates of the member lassi�ers are shown in Table 2.In general, a ommittee an be expeted to perform thebetter, the less the errors made by its members are or-related. Unfortunately unorrelatedness is not the asehere [1℄. As the DTW-based lassi�er is the only one ofour lassi�ers urrently apable of aeptable reognitionperformane, the member lassi�ers are rather similar.5.3 DEC on�gurationSeveral options were explored in the searh for the bestahievable reognition result using the DEC ommittee. In-depth experiments with the DEC ommittee lassi�er andthis data set have been onduted [1℄. It was found that theDEC ommittee should use both the �rst- and the seond-ranking results in the manner that all �rst-ranked results areused prior to any seond-ranked results from any lassi�erto obtain the best performane. The default rule was to usethe result of the best individual lassi�er.
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Figure 2. Rejetion experiment results.6 ResultsThe rejetion strategies desribed in Setion 4 weretested by varying the available parameters. The results ob-tained are shown in Figure 2. The '+'-marks orrespond tovoting rejetion, the solid line to distane rejetion and the'�'-marks to learning distane rejetion. The visible peakis a result of the adjustment of the rejetion threshold diret-ing it to a suitable value, whih it may osillate around. De-pending on the initial parameter values different haratersare rejeted in the proess, as an be seen from the vary-ing error rates. The dotted line is the �rst knowledge-basedmethod, the dashed the seond, and the dash-dot the third,all in ombinationwith the distane based rejetion sheme.The '�'-marks represent learning knowledge rejetion andthe irles lass rejetion. While all the other methods weretested independently, the knowledge rejetion options wereapplied in onjuntion with distane rejetion. The result ofthe knowledge rejet option alone an be seen at the begin-ning of the respetive lines.As the intention is to give the rejeted samples to a las-si�er spei�ally designed to handle the rejetions, it isimpossible to determine whih rejetion rate vs. error rateombination is generally the most effetive, sine this de-pends on the rejet lassi�er error rate. As the rejetionhandling stage has not yet been implemented, exat num-bers are not available. But one may assume that an aurayof 50% may be obtainable for the rejets. Based on this as-sumption the optimal values with regard to (2) have beengathered into Table 3. The olumn 'total error' inludes theerrors from the rejeted haraters assuming that the rejethandler error rate is onstant, er = 0:5.It an be seen that rejetion an derease the overall er-ror rate when assuming the rejet lassi�er to funtion at



Table 3. Best results for eah rejetionmethod assuming rejetion handler error rateer = 0:5.Rej e% rej% rel% parameters etot%None 11.07 0.00 88.96 - 11.07VR 11.03 0.09 88.96 Tvote = 2 11.07DR 9.22 3.53 90.44 T = 0:47 10.98LDR 9.76 2.26 90.02 T = 0:48; 10.89Tstep = 0:01KR 1 8.92 4.16 90.70 T = 0:47 11.00KR 2 8.81 6.10 90.62 T = 0:47 11.86KR 3 8.36 6.46 91.07 T = 0:47 11.58LKR 10.86 0.54 89.09 T = 1; 11.13Tstep = 0:66CR 10.96 1.66 88.85 rejet 'n','m' 11.79the 50% reognition rate. When examining the total errorrate, taking into aount the rejet proessing lassi�er's er-rors, it an be seen that the best individual result is obtainedthrough the learning distane-based rejetion sheme, fol-lowed by the distane-based rejetion alone and the om-bination of the �rst knowledge-based option and distane-based rejetion.On the other hand, when examining the reliability values,whih atually orrespond to the �rst stage's orret reog-nition perentage over the haraters not rejeted, the bestvalue would seem to be obtained from the third knowledge-based rejetion mode, again ombined with distane reje-tion. It is also the one with the highest rejet rate. Thehange in order most likely stems from the de�nition of re-liability (3): more rejetion and fewer errors naturally in-rease this value. When the situation is foused on as manyorret reognitions as possible and the ost of errors vs.rejetions is not high, it would seem that the reliability re-ally is not as interesting a measure, but the total error rate iswhat should be looked at.7 ConlusionsIn the ase of a system where minimizing errors is theobjetive, the tradeoff is how muh rejetion is aeptable,as inreasing rejetion effetively redues the error rate. Butin a system where the primary objetive is to produe asmany orret responses as possible, it should be desirableto use a separate mehanism for lassifying the rejets.The rejetion mehanisms, with the exeption of vot-ing rejetion, ould also be used on the member lassi�erlevel. But when using a ommittee suh as our DEC-basedone, having one lassi�er entirely restrain from giving a re-sult would lead to rules with empty �ontext plaes�, whih

would undermine the basi onept of the DEC ommittee.Thus in this ase rejetion is better performed on the om-mittee level.It has been shown that for the ommittee reahing 11%error rates the use of a rejet lassi�er with a 50% error ratean improve the results if an effetive rejetion sheme isused. Of the tested methods, a sheme in whih there isan adjustable threshold for distane-based rejetion was themost effetive one.Referenes[1℄ M. Aksela, J. Laaksonen, E. Oja, and J. Kangas. Appli-ation of adaptive ommittee lassi�ers in on-line haraterreognition. In Proeedings of International Conferene onAdvanes in Pattern Reognition, pages 270�279, 2001.[2℄ S. Baker and S. K. Nayar. Pattern rejetion. In Proeedingsof the onferene on Computer Vision and Pattern Reogni-tion, pages 544�549, 1996.[3℄ H. Druker, R. Shapire, and P. Simard. Boosting perfor-mane in neural networks. International Journal of PatternReognition and Arti�ial Intelligene, 7(4):705�719, 1993.[4℄ I. Guyon, L. Shomaker, R. Plamondon, M. Liberman, andS. Janet. Unipen projet of on-line data exhange and re-ognizer benhmark. In Proeedings of International Con-ferene on Pattern Reognition, pages 29�33, 1994.[5℄ T. Kohonen. Dynamially expanding ontext. Journal ofIntelligent Systems, 1(1):79�95, 1987.[6℄ J. Laaksonen, M. Aksela, E. Oja, and J. Kangas. Dynami-ally Expanding Context as ommittee adaptation method inon-line reognition of handwritten latin haraters. In Pro-eedings of International Conferene on Doument Analysisand Reognition, pages 796�799, 1999.[7℄ L. Lam and C. Y. Suen. A theoretial analysis of the appli-ation of majority voting to pattern reognition. In Proeed-ings of 12th International Conferene on Pattern Reog-nition, volume II, pages 418�420, Jerusalem, Ot. 1994.IAPR.[8℄ A. M. Mihael Sabourin and D. Thomas. Classi�er om-bination for hand-printed digit reognition. In Proeedingsof the Internationa Conferene on Doument Analysis andReognition, pages 163�166, 1993.[9℄ J. Paik, S. bae Cho, K. Lee, and Y. Lee. Multiple reog-nizers system using two-stage ombination. In Proeedingsof International Conferene on Pattern Reognition, pages581�585. IEEE, 1996.[10℄ J. J. H. Tin Kam Ho and S. N. Srihari. Deision ombinationin multiple lassi�er systems. IEEE Transations on PatternAnalysis and Mahine Intelligene, 16(1):66�75, 1994.[11℄ Y. B. Vladimir Radevski. Reliability ontrol in ommitteelassi�er environment. In Proeedings of International JointConferene on Neural Networks, volume 2, pages 561�565,2000.[12℄ V. Vuori, J. Laaksonen, E. Oja, and J. Kangas. Experimentswith adaptation strategies for a prototype-based reognitionsystem of isolated handwritten haraters. InternationalJournal of Doument Analysis and Reognition, 3(2):150�159, 2001.


