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h Centre, P.O.Box5400, Fin-02015 HUT, Finland2 Nokia Resear
h Center, P.O.Box 100, Fin-33721 Tampere, FinlandSummary. There are two main approa
hes to 
lassi�er adaptation. A single adap-tive 
lassi�er 
an be used, or an adaptive 
ommittee of 
lassi�ers whose mem-bers 
an be either adaptive or non-adaptive. We have experimented with some ap-proa
hes to adaptive 
ommittee operations, in
luding the Dynami
ally ExpandingContext (DEC) and the Modi�ed Current-Best-Learning (MCBL) approa
hes.In the experiments of this paper the feasibility of using an adaptive 
ommit-tee 
lassi�er is explored and tested with on-line 
hara
ter re
ognition. The results
learly show that the use of adaptive 
ommittees 
an improve on the re
ognition re-sults, both in 
omparison to the individual member 
lassi�ers and the non-adaptivereferen
e 
ommittee.Keywords. adaptive, 
ommittee, 
lassi�er 
ombining, 
hara
ter re
ognition1 Introdu
tionA 
ommon approa
h to any 
lassi�
ation task is to use a set of referen
e sam-ples, stored as prototypes or model 
oeÆ
ients, and mat
h the input samplewith them. In order to improve the 
lassi�
ation performan
e in situationswhere a signi�
ant amount of variation in the input samples exists, 
lassi�eradaptation is an e�e
tive method.Sin
e the primary obje
tive of any re
ognition system is to a
hieve thebest attainable performan
e, it is viable to 
ombine di�erent 
lassi�ers in a
ommittee formation to enhan
e overall performan
e. This is possible be
ausein the outputs of several 
lassi�ers the errors are not ne
essarily overlappingand thus the 
ommittee 
an improve on its members' results [1℄.Although the most 
ommon way of adaptation is to adapt a single re
og-nizer to the given training data, it is also possible to 
onstru
t a 
ommitteethat as a whole is adaptive. The members of su
h a 
ommittee 
an be adaptiveor non-adaptive themselves.In on-line handwriting re
ognition the 
lassi�er or 
lassi�ers must be 
a-pable of dealing with natural handwriting. Be
ause of the intrinsi
 variation1 A
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Matti Aksela et al.in writing styles adaptation is ne
essary for a user-dependent handwritingre
ognition appli
ation, as adopting the vast amount of variation into theinitial models is usually impossible. With the 
ontinuous in
rease in 
ompu-tational power, the use of 
ommittee methods generally requiring more thanone member 
lassi�er to re
ognize the input is no longer 
omputationallytoo 
omplex for even the smallest platforms performing on-line handwritingre
ognition, Personal Digital Assistants (PDAs).In our resear
h group, very positive results have been obtained with theDynami
 TimeWarping (DTW) -based re
ognizer using single 
lassi�er adap-tation [2{4℄. Still, the question as to how these results 
ould be improved fur-ther was left open. When sear
hing for a suitable method of 
ommittee adap-tation the idea of using the Dynami
ally Expanding Context (DEC) prin
iple,previously mainly used for spee
h re
ognition [5,6℄, arose. The prin
iple wasmodi�ed somewhat to suit appli
ation in handwriting re
ognition [7℄.Even though 
ommittee 
lassi�
ation has been extensively resear
hed, theuse of adaptive 
ommittee 
lassi�ers is a mu
h more novel approa
h. In thispaper we present two examples of adaptive 
ommittee 
lassi�ers. In additionto the DEC 
ommittee, also a modi�
ation of the Current-Best-Learning(CBL) algorithm [8℄ will be examined and are explained below. We showthat they outperform both a non-adaptive method and a simpler adaptivestru
ture.In Se
tion 2 the prin
iples for adaptive 
ommittee re
ognition are exploredand the adaptive 
ommittees used later in the experiments are des
ribed. Se
-tion 3 explains the data sets and member 
lassi�ers used in our experimentsand in Se
tion 4 the obtained results are shown. Finally in Se
tion 5 
on
lu-sions on the results are drawn and some future dire
tions elaborated on.2 Committee adaptation methodsThe basi
 operation of a 
ommittee 
lassi�er is to take the results of themember 
lassi�ers and attempt to 
ombine them in a way that improvesperforman
e. The member 
lassi�ers have a signi�
ant impa
t on the �nalperforman
e of the 
ommittee. It 
an generally be said that the less the errorsof the member 
lassi�ers are 
orrelated, the more e�e
tive the 
ommittee 
anbe in improving re
ognition a

ura
y.Numerous 
ommittee stru
tures have re
ently gained attention. Arguablythe most widely known method of 
lassi�er 
ombining, majority voting, hasin spite of its simpli
ity been shown to be very e�e
tive [9℄. Also Bayesian
ombination methods [10℄, multistage 
ombinators [11℄, group-wise 
lassi�-
ation [12℄ and 
riti
-driven 
ombining [13℄ have been studied.An adaptive 
ommittee 
an be thought of as 
onsisting of two parts. First,every 
ommittee must have a base de
ision rule, whi
h 
an be used when noadaptation has been performed. Then, some rule or set of rules for the adapta-tion must be in
luded. The type of rules 
an vary from very simple weighting
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ation of adaptive 
ommittee re
ognitionor preferen
e adjusting s
hemes to the 
reation of 
omplex lists of rules todetermine the 
ommittee's behavior. Adaptive 
ommittee re
ognition meth-ods found in the literature in
lude, for instan
e, the Adaptive Integration ofMultiple Experts (AIME) system [14℄.2.1 Dynami
ally Expanding ContextThe most e�e
tive adaptive 
ommittee used in our work in on-line handwrit-ten 
hara
ter re
ognition is based on the Dynami
ally Expanding Context(DEC) algorithm. The algorithm was originally developed to 
reate trans-formation rules that would 
orre
t typi
al 
oarti
ulation e�e
ts in phonemi
spee
h re
ognition [5℄. The notation for a DEC rule stands as l(A)r ! B,where A is a segment of the sour
e string S, B is the 
orresponding segmentin the transformed string T , and l(�)r is the 
ontext in string S where Ao

urs. In other words, A is repla
ed by B under the 
ondition l(�)r.The main philosophy behind the approa
h is to determine just a suÆ
ientamount of 
ontext for ea
h individual segment A so that all 
on
i
ts in the setof training samples will be resolved [5℄. Thus an optimal 
ompromise betweena

ura
y and generality is expe
ted to be obtained. The 
entral idea of themethod is to always �rst try to �nd a produ
tion of the lowest 
ontextuallevel to suÆ
iently separate 
ontradi
tory 
ases. Starting with 
ontext level 0,or the 
ontext-free level, 
ontexts of su

essively higher levels will be utilizeduntil all 
on
i
ts are resolved.The DEC prin
iple has to be slightly modi�ed to suit the setting of iso-lated handwritten 
hara
ter re
ognition [7℄. The DEC 
ommittee 
onsists ofa number of 
lassi�ers, that are �rst initialized and then tested and rankedin the order of de
reasing performan
e. The primary outputs and the se
ond-ranking results of the member 
lassi�ers are used as a one-sided 
ontext forthe 
reation of the DEC rules. The primary outputs and the se
ond-rankingresults of every member 
lassi�er are always di�erent 
hara
ter 
lasses. As
hemati
 diagram of the DEC-based adaptive 
ommittee 
lassi�er is shownin Figure 1. In this example there are three member 
lassi�ers. The �rst-ranking results are denoted symboli
ally as a, b and 
, and the se
ond-rankingones as d, e and f . For instan
e the rule \ab
d! s" means that if the �rst-ranking results for 
lassi�ers 1, 2 and 3 are a, b and 
 and the se
ond-rankingresult for 
lassi�er 1 is d, then the input 
hara
ter is 
lassi�ed in 
lass s.When training the DEC 
ommittee, 
hara
ters of known 
lassi�
ation areinput one by one. Ea
h time a 
hara
ter is input to the system, the member
lassi�ers give the �rst- and se
ond-ranking 
lass. Then the existing rules aresear
hed through and the �rst appli
able rule gives the 
lassi�
ation result. Ifno appli
able rule is found, the default de
ision is applied. The 
lassi�
ationresult is 
ompared to the 
orre
t 
lass. If the re
ognition was in
orre
t, anew rule is 
reated. Every new rule that is 
reated employs more 
ontextualknowledge, if at all possible, than the rule 
ausing the 
on
i
t. Eventually theentire 
ontext available will be used and more pre
ise rules 
an no longer be
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Fig. 1. A blo
k diagram of the DEC-based adaptive 
ommittee 
lassi�erwritten. For this situation a method for tra
king the 
orre
tness of the rules
an be used and the highest level rule most likely to be 
orre
t is applied.The introdu
tion of a new writer always results in the re-initialization ofthe rule base, as the adaptation is aimed to be user-dependent. With o�-linetraining the training set 
ould be reiterated until rule 
onsisten
y is ensured.But with an on-line system storing all previous input samples and using themin an iterative manner would be too expensive in terms of both performan
eand storage spa
e. Thus it is assumed that prior samples will not be availableafterwards.Several options were explored in the sear
h for the best a
hievable re
og-nition result using the DEC 
ommittee. These options in
luded the following.Default de
ision: The system's default de
ision rule is needed whenno 
hara
ter-spe
i�
 rules yet exist. Two methods for produ
ing the defaultde
ision were experimented with. The �rst is to simply use the output of thebest-ranked 
lassi�er. The alternative is to perform majority voting on theresults obtained from the 
lassi�ers to make the default de
ision.Requiring the in
lusion of the output: Another variation imple-mented was the possibility to require that the output symbol B for a rule ofthe form (A)r ! B must be in
luded in the 
ontext (A)r. In other words,one of the 
lassi�ers must produ
e the result for it to be the output of the
ommittee.Use of se
ond-ranking results: The 
ommittee 
an fun
tion eitherby using just the �rst-ranking results from its member 
lassi�ers or by alsoin
luding the se
ond-ranking results. The se
ond-ranking results 
an be usedin two ways, either horizontally or verti
ally.The horizontal in
lusion of the se
ond-ranking results means that the �rstand se
ond-ranking results from the best-performing member are used �rst.Then the two results from the se
ond-best performing 
lassi�er are used in thesame order, then the third 
lassi�er and so on. In Figure 1, this 
orrespondsto the order `a', `d', `b', `e', `
' and `f'.
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ognitionThe verti
al approa
h uses all �rst-ranked results prior to any se
ond-ranked results from any 
lassi�er. So the �rst-ranked result of the best 
las-si�er is followed by the �rst-ranked results from the other 
lassi�ers until allprimary outputs have been used. Then the se
ond-ranked results are used ina similar fashion. This approa
h 
orresponds to the order `a', `b', `
', `d', `e'and `f' in Figure 1.Con
i
t resolution: The initial version of the DEC implementationsimply dis
arded rules as they resulted in an in
orre
t answer but this wasqui
kly seen to be suboptimal. Hen
e three options were implemented todis
riminate between 
on
i
ting high-level rules. These are 1) ina
tivation ofthe latest in
orre
t rule, 2) 
ounting the 
orre
t appli
ations and using theone with most 
orre
t results, or 3) 
ounting both the 
orre
t and in
orre
tappli
ations and making the de
ision based on their di�eren
e.2.2 Modi�ed Current-Best-LearningThe Current-Best-Learning (CBL) algorithm [8℄ strives for a 
onsistent hy-pothesis for the entire set of samples by generalizing or spe
ializing an initialhypothesis. The original algorithm uses ba
ktra
king to ensure that the hy-pothesis is also 
onsistent with all prior samples. The spe
ialization operationindi
ates that a unit, a lo
ation within the hypothesis spa
e, that was pre-viously positive must be deemed negative, and the generalization then refersto setting a previous negative to positive.The algorithm used here has deviated quite far from that initial idea,but as the resemblan
e is still evident, it is here 
alled Modi�ed Current-Best-Learning (MCBL). As in the original version, the data spa
e is a two-dimensional grid. The use of just a positive and negative value would requirea separate 
lass for ea
h sample, whi
h would not be pra
ti
al. So the valuesused here are in a way estimates of the 
on�den
e in a parti
ular de
ision,and are de�ned as
j(x) = 1� dj(x)d1(x) + d2(x) ; (1)where 
j(x) is the 
on�den
e output for the sample x. j 2 f1; 2g is the indexindi
ating whether the 
on�den
e value is being 
al
ulated for the �rst orse
ond-ranking result, and d1(x) and d2(x) are the distan
es to the �rst andse
ond-ranked prototypes, respe
tively.By 
olle
ting the values and 
ombining them into 
lass-wise 
on�den
evalues pk(!j), where k is the number of the 
lassi�er and !j the 
lass, a ta-ble 
ontaining the 
on�den
es of ea
h 
lassi�er in the result for a parti
ular
lass 
an be formed. The de
ision of the 
ommittee is simply that member
lassi�er's result whi
h has the largest 
on�den
e value. To modify the hy-pothesis, the values pk(!j) are adjusted when the 
ommittee as a whole isin
orre
t. So when an individual 
lassi�er k is 
orre
t, the 
on�den
e of the



Matti Aksela et al.Table 1. Summary of the databases used in the experimentsDatabase Subje
ts Left-handed Females Chara
ters (a-z,0-9)DB1 22 1 1 � 10 400 8461DB2 8 0 5 � 8 100 4643result for that 
lassi�er is added to the overall 
on�den
e of the 
lass forthat 
lassi�er. On the other hand, when a 
lassi�er produ
es an in
orre
tresult, its total 
on�den
e is redu
ed by the 
orresponding amount, but notbelow zero. When the 
ommittee produ
es a 
orre
t result, no 
hanges aremade. The 
on�den
e values were initialized as the inverse of the orderingof the 
lassi�ers a

ording to their de
reasing re
ognition performan
e, ie.pk(!j) = 1k for all k and j.2.3 Sele
ting the 
urrently best 
lassi�erFor the sake of 
omparison a very simple form of 
ommittee adaptation wasalso implemented. The main idea is to sele
t the best 
lassi�er for ea
h in-dividual writer by evaluating ea
h 
lassi�er's performan
e during operationand use the result from the 
lassi�er that has performed the best up to thatpoint.3 ExperimentsAll the 
ommittee experiments were run in bat
h mode simulating on-lineoperation by taking data in its original order and disallowing reiteration.3.1 Des
ription of the data setsThe data used in the experiments were isolated on-line 
hara
ters 
olle
tedon a Sili
on Graphi
s workstation using a Wa
om Artpad II tablet. The datawas stored in UNIPEN format [15℄. The prepro
essing is 
overed in detailin [2℄. The databases are summarized in Table 1, giving the total amount ofwriters and how many of them were female and left-handed, respe
tfully, aswell as the total amount of 
hara
ters and 
hara
ters in the 
lasses used fortesting (a-z,0-9).Database 1 
onsists of 
hara
ters whi
h were written without any visualfeedba
k. The pressure level thresholding of the measured data into pen upand pen down movements was set individually for ea
h writer. The distribu-tions of the 
lasses were a

ording to their frequen
y in the Finnish language.Database 2 was 
olle
ted with a program that showed the pen tra
e onthe s
reen and re
ognized the 
hara
ters on-line. The minimum writing pres-sure for dete
ting pen down movements was the same for all writers. Thedistribution of the 
hara
ter 
lasses was approximately even.
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ation of adaptive 
ommittee re
ognitionTable 2. Re
ognition error rates of the four 
ommittee member 
lassi�ersClassi�er Distan
e measure BBC MC Error % Tail error %1 PL � 14.9 16.42 NPP � 15.1 15.83 NPP � 18.2 19.14 PL � 19.6 20.9The databases 
onsisted of di�erent writers. Only lower 
ase letters anddigits, a total of approximately 580 
hara
ters per writer, were used in theexperiments. Database 1 was used for forming the initial user-independentprototype set whi
h 
onsisted of 7 prototypes per 
lass and Database 2 wasused as a test set.3.2 Member 
lassi�ersThe experiments were performed using a 
ommittee 
onsisting of four indi-vidual 
lassi�ers. All member 
lassi�ers are based on stroke-wise mat
hingbetween the given 
hara
ter and prototypes. Dynami
 Time Warping (DTW)was used to 
ompute both the normalized point-to-point (NPP) and point-to-line (PL) distan
es [3℄, one of whi
h was used by ea
h 
lassi�er. The NPPdistan
e simply uses the squared Eu
lidean distan
e between two data pointsas the 
ost fun
tion and the total sum is divided by the number of mat
hingsperformed. In the PL distan
e the points of a stroke are mat
hed to linesinterpolated between the su

essive points of the opposite stroke [16℄. Allsamples were s
aled so that the longer side of their bounding box was 1000and the aspe
t ratio kept un
hanged [3℄. Also the 
enters of the 
hara
ter,de�ned by either the 'Mass 
enter' as the input sample's mass 
enter (MC)or by 'Bounding box' as the 
enter of the sample's bounding box (BBC), ismoved to the origin [3℄. The 
on�gurations and error rates of the member
lassi�ers are shown in Table 2.In general a 
ommittee 
an be expe
ted to perform the better the less theerrors made by its members are 
orrelated. Unfortunately un
orrelatednessis not the 
ase here. As the DTW-based 
lassi�er was the only one 
apableof a

eptable re
ognition performan
e, all the member 
lassi�ers are rathersimilar. This was 
on�rmed by experiments. For all pair-wise 
ombinationsof the four 
lassi�ers, the o

urren
e of the same error is mu
h more 
ommon(from 8.1% to 11.7%) than di�erent errors (from 2.2% to 3.3%).4 ResultsSome averages of the e�e
ts of the di�erent options on the DEC 
ommitteeperforman
e have been 
olle
ted into Table 3. The tail error per
entage in the



Matti Aksela et al.Table 3. Estimation of the e�e
t of various individual options aloneParameter Total error % Tail error %default de
ision: best 12.8 13.2default de
ision: majority 13.5 13.6in
lusion required 12.4 12.6in
lusion not required 14.0 14.2verti
al 2nd results 12.1 12.0horizontal 2nd results 13.5 13.4no 2nd results 14.1 14.7just 
orre
t 
on
i
t resolution 12.9 12.9
orre
t and wrong 
on
i
t resolution 13.0 13.0ina
tivate rule 
on
i
t resolution 13.8 14.3Table 4. Comparison with referen
e 
lassi�ersCombination method Error % Tail error %DEC 11.1 11.3MCBL 13.0 14.3Sele
ting the 
urrently best 
lassi�er 14.5 15.0Non-adaptive Majority Voting 14.6 15.9Best individual member 
lassi�er 14.9 16.4tables 
orresponds to the error per
entage 
al
ulated for the last 200 samplesfor ea
h writer.As a 
on
lusion from Table 3, the following 
an be seen: 1) the default ruleof the best 
lassi�er outperformed majority voting; 2) requiring the outputsymbol to be in
luded in the input was in general preferable; 3) se
ond-ranking results should be used in the verti
al ordering; 4) the best 
on
i
tresolution of rules was based on 
orre
t results only.The results of the adaptive 
ommittee 
lassi�ers and the non-adaptive ma-jority voting referen
e as well as the result from the best member 
lassi�erare 
ompared in Table 4. The DEC 
ommittee employed the best individual
lassi�er base de
ision rule, verti
al se
ond results use and just 
orre
t tra
k-ing for 
on
i
t resolution to obtain this best result. All of the 
ombinationmethods outperform the best member 
lassi�er. The DEC 
ommittee 
learlyoutperforms all the other methods used. Also the MCBL 
ommittee providesa notable improvement and performs better than the two simpler 
ommittee
lassi�ers. Sele
ting the 
urrently best 
lassi�er provides an improvement es-pe
ially in the tail error per
entage in 
omparison with the majority votingapproa
h.
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Fig. 2. The evolution of the re
ognition error rate for one writer from the DEC
ommitteeThe evolution of the re
ognition error rate, 
al
ulated within a slidingwindow of 100 
hara
ters, from the DEC 
ommittee for an example writer isshown in Figure 2. The average error rate for the writer was 3.2%, but theinitial error rate is around 6-7%, and the �nal level is below 2%.5 Con
lusionsThe experiments regarding adaptive 
ommittees have shown notable improve-ments in performan
e over any of the individual members for both the DECand MCBL based 
ommittee 
ombiners. The most e�e
tive 
ombination forthe DEC 
ommittee was to use the best individual 
lassi�er's result as thedefault rule, use the se
ond results in the verti
al manner and use either justthe 
orre
t results or both 
orre
t and in
orre
t results for 
on
i
t resolution.The next logi
al stage in the experiments with 
ommittee 
lassi�ers willbe 
ombining the adaptive 
ommittee with adaptive member 
lassi�ers. Per-haps the simplest way to 
ombine member 
lassi�er adaptation and 
ommit-tee adaptation would be to simply �rst adapt the individual 
lassi�ers. The
ommittee adaptation 
ould be started when for example a 
ertain a

ura
ylevel has been rea
hed.A notable problem with on-line adaptation in general is the diÆ
ulty ofobtaining the 
orre
t labels for input samples. As in any real-world appli
a-tion the labeling will ultimately depend on how 
arefully the user 
orre
tsre
ognition mistakes. Labels 
an probably never be obtained with 100% 
or-re
tness. So also the possibility of re
overing from errors is something thatmust be taken into 
onsideration when developing any adaptive on-line re
og-nition system. Adaptive 
ommittees may be able to provide more e�e
tiveerror handling me
hanisms for su
h situations and prove bene�
ial also inthis respe
t.
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