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1 Introduction

Recent trend in development of computer hardware points toward increased parallelism instead of speed-
ing up individual processor cores. This introduces new challenges to developers of computationally in-
tensive software. This includes Bayesian inference and learning that often require extensive computation
for anything but the simplest models.

In this work preliminary results on a distributed version of Bayes Blocks software library [1, 4] are presen-
ted. Bayes Blocks is a software implementation of the variational Bayesian building block framework [7]
that allows automated derivation of variational learning procedures for a variety of models, including
nonlinear and variance models. The library is implemented in C++ with Python bindings. The under-
lying framework resembles the variational message passing (VMP) framework [8], but includes support
for nonlinear and other models that are not in the conjugate exponential family.

Our aim is to develop a method that would allow learning the model in a distributed, asynchronous
fashion. Asynchronous mode of operation promises greatest benefits from parallelisation but makes
guaranteeing stability of the algorithm challenging [3].

2 Variational Bayesian Learning and Bayes Blocks

Variational Bayesian learning is based on approximating the posterior distribution of the latent variables
S and model parameters θ with a simpler distribution. Bayes Blocks uses a mean field type factorial
approximation q(S,θ) = q(S)q(θ) [2], that is fitted by maximising the lower bound

B =

〈

log
p(S,θ,X|H)

q(S,θ)

〉

= log p(X |H) − DKL(q(S,θ)||p(S,θ|X,H)) ≤ log p(X|H) (1)

of the marginal log-likelihood log p(X|H). Here 〈·〉 denotes expectation over q(S,θ) and DKL(q||p) is
the Kullback–Leibler divergence between q and p.

Bayes Blocks models are defined by connecting variable nodes that represent latent and observed variables
and computational nodes for mathematical operations such as sum, product and nonlinearities. For
continuous models the variables are mainly Gaussian with log-normal variance parametrisation. These
blocks can be used to build a wide variety of linear and nonlinear models such as hierarchical nonlinear
factor analysis [6] and hierarchical variance models or heteroscedastic models [5].

The (variational) parameters of q(S,θ) are updated using a variational EM algorithm that uses the
gradients of B with respect to the parameters. These can be evaluated efficiently using the network
structure and a message passing algorithm. As the form of the potential causing the gradients is known,
closed form update rules can be derived for most of the variables.

3 Distributed Bayes Blocks

A Bayes Blocks model can be distributed to several computers by adding new computational nodes that
encapsulate the network connection. These nodes operate by default asynchronously by reporting the



previously received values and gradients. In order to stabilise the method, the gradients are transformed
to be invariant of the value of parent with respect to whom they are evaluated. This prevents placing
product nodes as a descendant of a network connection before a variable node. Otherwise the network
connections can be placed freely. In the current implementation, the actual network connections are
handled using TCP/IP, but more sophisticated transports could be easily incorporated as well.

Direct implementation of this method would still be unstable for many models. If, for instance, the sum
of two variables residing on different computers is used to model something, the asynchronous updates
will make both variables correct the same error in the output of the sum and overshoot, leading to
divergent updates. This can be corrected by adding a momentum term to the reported gradients so that
the internal gradient value gt held by the network connection node when receiving a new value gnew over
the network is updated using the old value gt−1 as gt = (1 − α)gnew + αgt−1 for some α ∈ [0, 1]. Even
relatively small values such as α = 0.1 are sufficient to effectively stabilise the iteration in the above
example.

4 Experiment

The distributed Bayes Blocks library was tested with a distributed factor analysis model

x = As + ǫ, (2)

where x denotes the observations, A is the loading matrix, s ∼ N(0,P) are the factors and ǫ ∼ N(0,Q)
the noise. The covariance matrices P and Q were assumed to be diagonal. 100 samples of 4 dimensional
data were drawn from the distribution specified by the model with two factors and P = I,Q = .01I, and
A drawn randomly from N(0, 2I).

The model used for the data was similar to the one specified above but with 3 factors. The prior for A

was fixed to unit variance while the diagonal terms of the covariances of s and ǫ were estimated from
the data. The model was split to four independent processes communicating over the network so that
each factor and its variance as well as the corresponding column of the mixing matrix were in separate
processes and the data and noise covariance in the last. The structure of the model and its distribution
to different processes is illustrated in the left panel of Fig. 1.

The convergence of the estimates of selected parameters is shown in the right panel of Fig. 1. In order to
break the symmetry between different factors and avoid problems caused by unsynchronised starting times
of different processes, the factors have random initialisations that decay during the first 500 iterations.
As the figures show, the model converges rather quickly after the effect of the initialisations has been
removed. The final slow drift is caused by rescaling of A and s to make A confirm to its fixed prior. The
directions of the columns of A do not change after the first 1000 iterations. The extra third factor has
been essentially shut down by making the corresponding column of A equal to zero and the variance of
s small.

5 Conclusion

The presented distributed Bayes Blocks method can successfully divide the computation required for
variational Bayesian learning of large models. The method was demonstrated with a proof of concept
distributed factor analysis model. The ability to divide a model to several computers can be helpful in
many cases, such as when the model is too large to fit to memory of a single computer.

While the method works in the simple example, much work is needed before it is really practical. The
variational EM employed often converges slowly and regular Bayes Blocks implements certain speedups.
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Figure 1: Left: An illustration of the distributed factor analysis graphical model. The variances of the
factors have been omitted from the figure. Right: Convergence of selected parameter estimates. The
values show the means of the parameters in the posterior approximation q.

The applicability of these to distributed models is an important open issue. Further research is also
needed to provide guarantees for the stability of the method.
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