
T-61.246 DSP 2004 118/128 MATLAB

Matlab

Matlab is a language for technical computing3. It is widely used in the industry as well as in
the academic world. Here at HUT Matlab is available for students and researchers in Unix and
Windows networks. Unfortunately, there are not any off-line student versions available, but
there is a free GNU Octave4, which is mostly compatible with Matlab.

How to Read

This is basically a short reference for using Matlab in digital signal processing. This is not a
tutorial. There are Matlab demo exercises in the autumn course that explain a lot more. These
and a lot more can be found in http://www.cis.hut.fi/Opinnot/T-61.246/Matlab/.

Probably the best help can be found from Matlab itself. It contains all information on the
commands and lots of examples and tutorials. There are some functions listed in a section from
Page 121.

Using Matlab at HUT

The newest version of Matlab is Matlab 7. There are lots of graphical user interfaces and helps,
but all commands can be written also in the prompt in Command Window. Matlab provides
excellent help pages with several examples. Type help function in order to get a quick help
for the operation of the function function.

When working in Unix environment, start by typing use matlab and open Matlab then with
matlab. Listening of sound files may not work directly inside Matlab, but you have to write
them to a WAV format (wavwrite) and listen with a player in Unix. The command exit

terminates the session.

You should write down all your code into a file, which can be re-run or modified later. Use
the Matlab editor, which can be opened by typing edit in Command Window. Save your files
in the subdirectory Z:\MYDSP\ (or corresponding) in Windows Network and set your Current
Directory (a box containing a directory path in top of Matlab Window) to point to the same
directory.

Basic Elements and Operations

Basic elements and operations are introduced in Matlab exercise I. Matlab operates with ma-
trices of different sizes. By typing:

A = [3 -2 1 1 5; 2 4 0 -1 -3; 5 5 9 -2 -4]

we get a matrix of size N×M , where N is the number of rows and M is the number of columns.

A =

3 -2 1 1 5

2 4 0 -1 -3

5 5 9 -2 -4

We can easily get vectors with colon notation or by picking numbers from a matrix:

3http://www.mathworks.com
4http://www.octave.org

T-61.246 DSP 2004 119/128 MATLAB

t = [3 : 0.5 : 4.5] % [start : interval : end]

y = A(2, 2:5); % second row, columns 2 to 5

% no feedback on the screen if semicolon (;) in the end of line

Matrix calculations can be made if the dimensions are proper.

t*y % error, dimensions do not hold [1x4]*[1x4]

t.*y % itemwise multiplication, [1x4].*[1x4]=[1x4]

t*y’ % inner product, ’ == (complex conjugate) transpose, [1x4]*[4x1]=[1x1]

t’*y % outer product, [4x1]*[1x4]=[4x4]

You can find the size of the matrix using size(A) and the length of the vector using length(y).

Matlab provides basic operations for scalar, vectors or matrices, as well as for real and complex
numbers, e.g. exp(j*pi), cos(3.14), sqrt(25), ... (see Table ??).

Scripts and functions

Scripts and functions are both Matlab files ending with .m. They have slight but important
differences althought they look like similar. You can add any comments to your files after % sign.

A script is a set of commands executed in a batch. The variables are found in the Matlab
Workspace. Consider a script, which draws a circle with red color on the screen. The following
lines are in a file called drawcircle.m.

w = [0 : pi/64 : 2*pi];

C = exp(j*w); % i and j are both imaginary units in Matlab

plot(real(C), imag(C),’r’); % ’r’ == red color

The script is called from Command Window by drawcircle, i.e. without the extension .m.

>> clear % removes all variables in Matlab Workspace

>> whos % --> no variables

>> drawcircle % executes commands and draws a circle on screen

>> whos % --> variables C and w available!

A function may receive input variables and produce output variables which are seen only in
the memory area of the function.The first line of the function starts with a word function

and contains names of input and output variables. Consider an example on a function which
computes the angle in degrees. The filename for the function is getdeg.m and contains:

function [deg] = getdeg(z)

% GETDEG computes the angle of the complex number z = x + yj in degrees

x = real(z);

y = imag(z);

deg = 180 * atan(y/x) / pi;

If several input or output arguments, they are listed with the comma (,) seperator. The second
line (and adjacent %lines) are printed when help getdeg.

The function is called from Command Window with getdeg

>> clear % removes all variables in Matlab Workspace

>> whos % --> no variables

>> z1 = 3 + 4*j; % a complex-valued z1

>> [degrees] = getdeg(z1);

>> whos % --> variables z1 and degrees available, but no x, y nor deg

T-61.246 DSP 2004 120/128 MATLAB

Somehow a function is a safer way to work because variables cannot be changed anywhere else
but in the code. Assume that you have used a variable j as a counter, and its value is now
100. Then if you run drawcircle.m you will not get a circle while C = exp(100*w);! On the
other hand, reading an array of numbers from a file to Matlab workspace is useful to do only
once, not in a function that is called 100 times. In this case an array is read and then a script
is used or the variable is given into a function as an input.

Error messages

If a syntax error occurs, it is informed in red color with the line and column. Often an error
is easily found. Typical errors are a wrong number or type of parentheses, a comma instead
of a dot, small/CAPITAL letter instead of CAPITAL/small, wrong number of arguments for a
function, etc.

Sometimes a logical error happens, which means that no error messages are reported but the
code does not work as hoped. If scripts are used, one can remove all variables by clear all,
and try to run the code again.

Plotting and Printing

Basic plotting and printing commands are introduced in Matlab exercise I. Matlab provides
easy tools for plotting figures. The basic command is plot, normally with two inputs X and
Y. It is nice that you add labels and titles for each figures, grid on, title, xlabel, legend, etc.

You can print your figure directly from the Matlab window, but it is probably nice to export it
into a file. Depending on which operating system you are using:

print -dmeta myfig.emf % Windows Metafile for Word

print -dpng myfig.png % Portable Network Graphics for web browsers

print -deps myfig.eps % Encapsulated PostScript for LaTeX

Signal Processing Toolbox

All the commands related to Signal Processing Toolbox can be found by typing help signal.
There are some nice demos, e.g. a DTMF demo with phone, and some GUI tools like sptool

(Matlab exercise II).

Digital signal is represented as a vector in Matlab. For example, x[n] = 2δ[n]− 3δ[n − 2] can
be written using the coefficients x = [2 0 -3]. An audio signal can be read with [x, fs,

nbits] = wavread(’Z:\MYDSP\audio.wav’); Audio vectors can be exported with wavwrite.

An impulse response sequence h[n] = δ[n] − δ[n − 4] is expressed by h = [1 0 0 0 -1]. A
digital filter H(z) = B(z)/A(z) is represented in Matlab using the coefficients of the numerator
polynomial B(z) and that of the denominator polynomial A(z). For example, in case of second-
order IIR filter H(z) = (1− z−2)/(1 + 0.81z−2), the vectors and some analysis functions are

B = [1 0 -1]; % coefficients of B(z) in H(z)=B(z)/A(z)

A = [1 0 0.81]; % coefficients of A(z) in H(z)=B(z)/A(z)

figure(1); freqz(B, A); % amplitude and phase responses

figure(2); zplane(B, A); % pole-zero plot

figure(3); impz(B, A); % impulse response

T-61.246 DSP 2004 121/128 MATLAB

In Matlab II there are examples on computing the spectrum and spectrogram of the signal.
There are also demos on analyzing a LTI system and filtering. Examples on filter design
(system synthesis) can be found in Matlab III. An important part here is to scale the frequencies
correctly between [0 . . . 1]:

fc

fT
=

fc,Matlab

2
Example:

3500 Hz

20000 Hz
=

fc,Matlab

2
⇒ fc,Matlab = 0.35

Some Matlab Commands

.
General commands and notations
quit, terminates Matlab session
help, lists all function directories available
help function, gives help on function, e.g. input arguments
type function, shows the code of function, which are not build-in
pause, waits until the user presses any key
pause(s), waits s seconds
more, pauses scrolling
who or whos, lists all variables
diary, copies user commands into a file
ver, lists all toolboxes (versions) available
! OS-command, calls command in operating system
%, starts the comment till the end of line
;, does not print anything on screen
disp, prints strings of text nicely

File I/O
load, opens a MAT binary file containing variables
save, saves the variables into a MAT binary file
textread, reads a formatted text file into Matlab workspace
dlmread, reads a formatted file of numbers into Matlab workspace
fopen, opens a file
fclose, closes a file
fprintf, writes into a file
fprintf(1,’...’), writes into a file handle 1 = on screen

Useful commands
size, gives dimensions of the matrix (vector)
length, gives the length of the vector
fliplr, flipud, flips the order of items in an array, x[n]→ x[−n]
[xstart : interval: xstop], creates a vector starting from xstart
linspace, creates a vector similarly to [* : * : *] notation

Elemenary functions
exp, cos, sin, atan, sqrt, log, log10, ...
abs, absolute value of a complex number, e.g. |H(ejω)|
angle, angle of a complex number, e.g. ∠H(ejω)
real, real part of a complex number
imag, imaginary part of a complex number
roots, calculates roots of a polynomial

T-61.246 DSP 2004 122/128 MATLAB

sum, sums elements column-wise

Plotting figures
plot, plots continuous signals
stem, plots sequences
clf, clears the current figure
cla, clears the current axis
shg, the active window is brought on top
close all, closes all windows
subplot, creates several axis in a window
grid on, inserts a grid on figure
title, title for a figure
xlabel, title for x-axis
ylabel, title for y-axis
legend, creates a legend for a figure
axis, zoom the axis, axis([xmin xmax ymin ymax])

print, exports a figure into a file or prints it to a printer
get, gets values of an object, e.g. p = plot(..); get(p)

set, sets values of an object, e.g. p = plot(..); set(p,’LineWidth’,2)

Commands for audio
soundsc or sound, plays a vector as sound (sc = scaled)
wavread, reads a WAV file into Matlab
wavwrite, writes a WAV file from Matlab

DSP functions, see Signal Processing Toolbox
fft, fast Fourier transform
ifft, inverse Fourier transform
dftmtx, computes a matrix W for DFT
unwrap, eliminates jumps in phase angles
conv, linear convolution of two sequences
conv, polynomial multiplication
filter, filters signal x with a filter given
impz, impulse response for a discrete-time finite-dimensional system
freqz, draws frequence response, magnitude and phase response
zplane, plots a pole-zero-diagram
residuez, partial-fraction expansion of z-trasform H(z)
tf2zp, converts transfer function to corresponding zeros and poles
tf2sos, converts transfer function to corresponding set of second-order systems
buttord, cheb1ord, ellipord, etc., estimates the minimum order for fulfilling specifications
butter, cheby1, ellip, etc., computes filter coefficients
fir1, one of FIR filter design procedures, window method
remez, one of FIR filter design procedures, Parks-McClellan

T-61.246 DSP 2004 123/128 MATLAB

Some Matlab Examples

Read an audio file, plot and listen to it.

[y, fs, nbits] = wavread(’vowel_o.wav’);

M = length(y);

t = [0 : M-1]/fs;

plot(t, y); grid on;

title(’My vowel /o/’); xlabel(’time (s)’);

axis([0.1 0.14 -0.8 0.8]);

soundsc(y, fs); 0.12 0.13 0.14

−0.5

0

0.5

Compute a FFT X(ejω) from the whole sequence and
plot the spectrum.

yF = fft(y);

M = length(yF);

w = fs * [0 : M-1]/M;

plot(w, 20*log10(abs(yF))); grid on;

title(’Spectrum’); xlabel(’freq. (Hz)’);

set(gca, ’XLim’, [0 fs/2]); 0 2000 4000
0

100

200

300

Design an elliptic IIR lowpass filter with cut-off 0.3π
and plot the frequency response |H(ejω)| and a pole zero
diagram.

Wp = 0.3; Ws = 0.36;

Rp = 0.5; Rs = 40;

[N, Wn] = ellipord(Wp, Ws, Rp, Rs);

[B, A] = ellip(N, Rp, Rs, Wn);

freqz(B, A);

zplane(B, A); 0 1000 2000 3000 4000 5000
−400

−300

−200

−100

0

Frequency (Hz)

P
ha

se
 (

de
gr

ee
s)

0 1000 2000 3000 4000 5000
−100

−80

−60

−40

−20

0

Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Design a FIR filter, cut-off at 3300 Hz and fT = 16 kHz,
with Hamming window of order 15, plot the frequency
response |H(ejω)|.

Wp = 3300 / (16000/2);

N = 15;

[B, A] = fir1(N, Wp, hamming(N+1));

[H, w] = freqz(B, A, 1024, 16000);

plot(w, abs(H)); −1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

