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Abstract. This paper introduces a novel way of analyzing input patterns presented to the Self-Organizing 
Map (SOM). Instead of identifying only the “winner,” i.e., the model that matches best with the input, we 
look for the linear mixture of the model (reference) vectors of the SOM that approximates to the input 
vector best. It will be shown that if only nonnegative weights are allowed in this linear mixture, the 
expansion of the input pattern in terms of the models is very meaningful and contains only the essential 
terms. Especially if the input pattern contains information about a mixture of objects, as the case is when 
the input describes a mixed state in a process or a machine, or if the input consists of features from several 
independent objects, this fitting gives more exact information about, and provides a better insight into the 
input state than what the mere “winner” can give. 
 
Keywords: least-squares fitting, linear mixture, self-organizing map 
 

 
1. Introduction 
 
When an unknown input vector is presented to the Self-Organizing Map, called briefly 
the SOM (Kohonen 2001), the algorithm returns and displays the location of the best-
matching model, the “winner.”  In the case that the input vectors form a sequence, the 
corresponding best-matching models can be thought to constitute a trajectory, which 
describes and visualizes, e.g., the temporal development of the state of a process or a 
machine. Additional information about the degree of matching is contained in the 
quantization errors, i.e., the distances of the input vectors from the model vectors that are 
closest in the input space. 
 
However, it has long been felt that a single response, the “winner,” to an input pattern is 
not sufficient for the description of input information that is derived from two or more 
independent sources, for instance when the input describes features of several 
simultaneously occurring distinct objects. One might stipulate that separate responses, 
corresponding to the different objects, should be obtainable. Consider also that if the 
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SOM is used to track sequences of the states of a system or a machine, the input vectors 
are usually constructed as averages of measurements made over time windows of 
considerable length, say, minutes or even hours. If the system is just then undergoing a 
state transition, the input vector averaged over the time window is expected to be a linear 
mixture of the samples, eventually representing different states that have been occurred 
within that window. 
 
Another reason for mixtures of input states to occur is that the system from which the 
input observations are derived is defined by several more or less independent state 
variables. Their deviations from regular values are caused by faults or noise. The 
simultaneous occurrence of two or more independent faults in different parts of the 
system might then be reflected as a mixed input state of the SOM, and thus as a mixture 
of input signal components, each of which corresponds to an individual fault. 
 
A very intriguing application occurs in document analysis that is based on the usage of 
typical words in the text. An interdisciplinary or a multidisciplinary document is expected 
to contain words from the different vocabularies of its subtopics. One may then be 
interested in the relative contributions of the mixed topics in the document.  
 
Consider also that if the input vector is, say, close to two model vectors in the input 
space, it is a haphazard choice which one of the latter will be selected for the “winner.” 
Then, too, it would be desirable to evaluate the probabilities of the best candidates for the 
“winner.” 
  
It will be shown in this article that a more thorough description of the input is obtainable 
if, instead of determining only the “winner” among the models, one is able to fit a linear 
mixture of the models (reference vectors) to the input. It should be noted that I do not 
mean ”K winners” that are rank-ordered according to their matching, nor a set of  
“parallel winners,” each of which is defined over a local area of the SOM. Instead, the 
input pattern is approximated by the linear mixture of any subset of models (i.e., 
reference vectors) that approximates to the particular input best. 
  
In this paper we shall show, however, that if only nonnegative weights are allowed in the 
fitting of the models, there will be left only a relatively very small number of models in 
the mixture, i.e., the fitting is very selective.    
  
Since we are going to deal with linear-fitting problems in the sequel, it may seem proper 
that the SOM should be of the dot-product type, in which the matching of the input vector 
with the model vectors is measured in terms of their dot products. Then the input vector 
and all of the weight vectors shall be normalized, say, to unit length. Nonetheless there 
are no restrictions in principle to the application of the same ideas to SOMs that have 
been constructed on the basis of the Euclidean or any other metric. Even in these cases, 
however, before using this method, it will be mandatory to normalize the SOM model 
vectors. 
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Let us regard the input as a Euclidean vector x, and let its dimensionality be n. In matrix 
calculations x shall be regarded as an n-dimensional column vector. Let us then denote 
the SOM by a p times n matrix M, where p is the number of the models. If the model 
vectors (regarded as column vectors) of dimensionality n are denoted as mi = 1, 2, … , p, 
they constitute the rows of M and must then be denoted by mi´, where the prime (´) 
denotes the transpose of a vector or a matrix. All of the mi shall have an identical 
Euclidean norm. In the dot-product SOM, the “activation” of the models, or the degree of 
matching of x with the mi, is though to be represented by the p-dimensional activation 
vector (column vector) y, 
 
           y = M x .                                                                                                           (1) 
 
The largest component of y identifies the best-matching model, the “winner.” 
 
Comment. Graphically, the SOM is most often defined as a two-dimensional array of 
nodes where with each node i, a model mi is associated. During learning, the models in 
this array interact in such a way that the highest-activated cell imposes corrections on its 
neighboring models in the array in the same direction. One must clearly realize the 
distinction between the rows of matrix M and the 2-D geometry of the SOM array, 
however.  
 
 
2. Failure of the unconstrained linear fitting 
 
  
Let us try to fit the best linear mixture of any given reference vectors mi to a given vector 
x. In other words, we want to determine the optimal scalar coefficients ki  in the following 
error expression e, whereupon the Euclidean norm of e shall be minimized: 
 
       e  =  k1 m1  +  k2 m2  + … +  kp m p –  x  .                                                          (2)  
 
Let k be the column vector formed of the ki, 
 
       k = [k1, k2, …, kp]´.                                                                                             (3)  
 
The linear mixture of the mi can be written, using matrix expressions, as  
 
       k1 m1 + k2 m2 + ... + kp mp = M´ k ,                                                                  (4) 
 
  
where M´ is the transpose of the matrix M that has the reference vectors as its rows; the 
latter are identified as the mi´.  Now M´ k is the estimate of x. If the fitting error is 
written as 
 
          e = M´ k – x ,   
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the square of the Euclidean norm of e is  
 
         e´ e  =  k´ M M´ k – k´ M x – x´ M´ k + x´ x .                                               (5) 
 
It is generally known that e´e is minimized if  its gradient with respect to k is equal to 
zero. This gradient (cf., e.g., Kohonen, 2001, Ch.1) is 
 
         gradk  (e´ e) = M M´ k – M x .                                                                         (6) 
 
From the expression (6) we may try to solve for k: 
  
          k  = (M M´)-1 M x .                                                                                        (7) 
 
Unfortunately, the expression (7) can only be computed if (M M´)-1 exists, i.e., if the 
determinant of M M´ is nonzero. A necessary condition for it is that all of the mi, i = 1, 2, 
…, p are linearly independent. For the SOM matrices this is usually not the case. 
 
Even though we would have a SOM in which the dimensionality of the vectors and the 
number of the models were identical, and even though (M M´)-1 would exist, we may 
discern a weird result. If the input x is an arbitrary vector, some of the ki in its linear 
mixture may attain very large values (say, some thousands when the vectors are 
normalized). The fitting may be perfect, but it makes no sense. 
 
This is a kind of a problem that is called “overfitting.” Such an oddity can be explained 
by the following simple example. Consider that usually the neighboring SOM model 
vectors are rather similar, i.e., their inner products are small.  In Fig. 1 we have two 
model vectors mi and mj  that have a small mutual angle.  Their weighted sum has to 
approximate to a vector x that is very roughly perpendicular to them. In this example, one 
of the fitting coefficients (ki) attains a very large and positive value, whereas the other 
one (kj) has a very large negative value. 
 
 

mi

mj

mkj j

mki i

x

 
 
Fig. 1. Explanation of the “overfitting” effect. 
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3. Fitting with nonnegative weighting coefficients  
 
Much attention has recently been paid to least-squares problems where the fitting 
coefficients are constrained to nonnegative values. Such constraints are natural, when the 
negatives of the samples have no meaning, for instance, when the input consists of 
statistical indicators that can have only nonnegative values, or is a weighted word 
histogram of a document. In these cases at least, the constraints contain additional 
information that is expected to make the fits more meaningful. In any case we are able to 
circumvent the above “overfitting” problem, if we forbid the (eventually large) negative 
weights. 
 
The mathematical problem is formulated as follows: for general dimensionalities of M 
and k, 
 
         minimize  norm(M´ k – x)                                                                                       (8) 
 
subject to the condition that all of the elements of k are nonnegative. In this work the 
norm is Euclidean. 
 
Gradient-descent optimization. There exist several ways for the solution of (8). The 
simplest and most straightforward is the gradient-descent optimization. An iterative 
algorithm that takes into account the nonnegativity constraint can be specified in the 
following simple way. Denoting the component i of the gradient in eq.(6) by Gi we write 
 
          for all i ,     ki (t + 1) = max (0, ki (t) – alpha Gi ) ,                                                 (9) 
 
where t is the integer-valued index of the iteration step, and alpha is a scalar factor that 
defines the size of the gradient step. Typically, a few tens of thousands of iteration steps 
(9) are necessary to reach a reasonably stable solution with a numerical accuracy of, say, 
three significant digits. 
 
It may still be possible to optimize (9). 
 
The Matlab function lsqnonneg. The present fitting problem belongs to the broader 
category of quadratic programming or quadratic optimization, for which numerous 
methods have been developed over the years. A recent one-pass solution of (8) is based 
on the Kuhn-Tucker theorem (cf. Lawson & Hanson, 1974), but it is too complicated to 
be reviewed here. Let it be mentioned that it has been implemented as the function named 
the lsqnonneg in the Matlab:  
   
                        K = lsqnonneg (M´, X, K(1)) ,                                                               (10) 
 
where M has been denoted by M and x by X, respectively, and K(1) is the initial value of 
k used by the algorithm. 
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Initialization.  It might seem advisable, in order to guarantee a fast convergence to the 
global optimum, to start with a good initial value of the coefficient vector. In the SOM, 
such an initial ”linear mixture” could be taken to consist of the “winner” term mc only. In 
other words, kc = 1, whereas the rest of the ki are put equal to zero. In the gradient-descent 
method this initialization is slightly better than when starting with the zero vector for 
k(1). Contrary to that, with the lsqnonneg, no significant difference in the convergence 
times with different initializations has been observed.   
 
Limitation of the methods.  For both of the above methods, the rank of the matrix M 
can be arbitrary, and solutions exist even though (MM´)-1 does not. Nonetheless one can 
easily see that there are theoretical cases where no solutions exist, or where the optimal 
solution is not unique. The latter case is due when some of the mi in the final optimal 
mixture are linearly dependent. It can be checked by first forming the matrix M1 of those 
models, the corresponding coefficients ki of which are positive, and then computing the 
determinant det(M1 M1´) 
If it is zero, the components in the linear mixture are linearly dependent. Such a case, and 
already the case that the components are nearly dependent,  will also be manifested by a 
slow-down of the computing time in both of the above methods 
 
Comparison of the computing times of gradient descent and lsqnonneg. In the above 
methods, the computing time depends strongly on x and M. Also the use of multiple 
cache memory systems in the contemporary computers makes the benchmarking of 
computing time very vague. 
  
The following experiments were made with x and M consisting of positive random 
numbers. The matrix M was square (i.e., the number of models and their dimensionality 
were equal), and the dimensionality ranged from 10 to 1000.  The results given in Fig.2 
are medians of five independent runs. The number of iterations in gradient descent was 
10 000. 
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Fig. 2. Comparison of computing times. Left: the gradient-descent method. Right: the function lsqnonneg. 
 
 
 
4. Applications 
 
4.1. Cellular-Phone Data 
 
The first practical example describes the performance of a cell in a cellular-telephone 
network. The input vector to the SOM was defined by 22 variables that describe the key 
performance indices (KPI) such as signal qualities in inward and outward transmission, 
frequencies of breaks in operation relating to different kinds of faults, and loadings of the 
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cell. We had data from 110 cells available, and each one of the records was an average of 
the respective measurement or evaluation over an hour. This example is from cell No. 50 
during 879 hours of uninterrupted operation.  
 
The particular SOM constructed for this study consisted of 80 models with the 
dimensionality of 22.  
 
A comparison of the different responses to the input vector has been presented in Fig. 3 
for five successive sampling intervals (Nos. 10 through 14). The algorithm thereby used 
was the lsqnonneg. On the first row we see the degree of matching (dot product) of the 
various models with the input. The second row shows the location of the ”winner” on the 
SOM. The third row illustrates the weighting coefficients ki, displayed on the SOM 
groundwork. The saturation of the color corresponds to the value of ki. One can discern 
that the resulting mixtures that describe the input states are not very complex: on the 
average, they contain only about five per cent of all models. 
 
Table 1 shows the quantization and fitting errors for five samples that were not involved 
in the computation of the SOM. Let us recall that the expression of the former error is 
norm(mc – x), where mc is the “winner,” and that of the latter is norm(M´k– x), 
respectively. 
 
 
Table 1.  The quantization error and the fitting error for five successive sampling intervals of the mobile-            
phone data. 
 
      Interval No.                 Quantization error              Fitting error 
 

10                                    .5659                            .3072 
11                                    .2996                            .2272           
12                                    .1777                            .1270 
13                                    .1550                            .0907 
14                                    .1694                            .1435  
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Fig. 3. Comparison of different displays. Horizontal direction: five successive sampling intervals.  First 
row: The activation vectors y = Mx averaged over one-hour sampling periods. Second row: The locations 
of the “winner” on the SOM. Third row: the fitting coefficients ki, shown on the SOM groundwork.  
 
 
 
4.2. Document Analysis  
 
In the second application, the input item was a weighted histogram of the vocabulary of a 
given document. The objective was to perform a text analysis, in order to discover to 
what extent the vocabularies of the given document and those of the other documents 
overlap. It must be emphasized that only the most distinctive words were taken into 
account in the overlapping vocabularies. 
 
The Reuters corpus.  The first more extensive experiment of this type was based on the 
text corpus collected by Reuters. No original documents were made available, but Lewis 
et al. (2004) have preprocessed the textual data by removing the stop words, and reducing 
the words into their stems. J. Salojärvi from our laboratory selected a 4000-document 
subset from this preprocessed corpus, restricting only to such documents that were 
classified into one of the following categories:  
  
        1. Corporate-Industrial.  
        2. Economics and Economic Indicators. 
        3. Government and Social. 
        4. Securities and Commodities Trading and Markets.    
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Salojärvi then picked up those 1960 words that appeared at least 200 times in the selected 
data and weighted the word  i (”term”) of document  j  by the factor 
 
        wij =   (1 + log( TFij )) log( N / DFi ) ,                                                                  (12)   
 
where TFij is the ”term frequency” (frequency of word i in document  j), DFi  (”document 
frequency”) tells in how many documents word i appears, and N is the total number of 
documents (Manning & Schütze,1999). 
          
In order to carry out statistically independent experiments, a small subset (one per cent) 
of the documents was set aside for testing. Using the weighted word histograms of the 
rest of the 4000 documents as input, a 2000 by 1960 SOM was constructed. Fig. 4 shows 
the four hit histograms, where the samples of the various classes were separately 
presented to the input of the final SOM.  
 
 

 
Fig. 4.  Distributions of hits of the samples of the four classes on the SOM, respectively. Class 1: 
Corporate-Industrial.  Class 2: Economics and Economic Indicators.  Class 3: Government and Social. 
Class 4: Securities and Commodities Trading and Markets. 
 
 
 
Labeling of the SOM models.  The number of input items used for training was only 
about twice the number of models, so it was not reasonable to label the models according 
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to the majority of hits on them. Instead, each model was labeled according to its K nearest 
neighbors in the input space of the training data, where K was initially taken as 10 and 
increased gradually only in the case of ties in the determination of the majority of labels. 
Fig. 5 shows the labeled class regions on the SOM, using pseudocolors. 
 

 
Fig. 5. Labeling of the SOM nodes according to the document classes. Red: Corporate-Industrial. Blue: 
Economics and Economic Indicators.Green: Government and Social. Yellow: Securities and Commodities 
Trading and Markets. 
  
  
Fitting results.  The best-fitting linear mixtures of models for four documents are shown 
in Fig. 6 on the SOM groundwork, indicating the classification and the value of the due ki 
by the hue and the saturation of the pseudocolor of the corresponding SOM location, 
respectively. 
 
The quantization error and the fitting error for the four documents are given in Table 2. 
Notice that these documents were excluded from the corpus when training the SOM.  
 
 
Table 2.  The quantization error and the fitting error for four documents 
 
      Document No.                 Quantization error              Fitting error 
 

101                                    .8541                             .8036 
201                                    .8084                             .7767           
501                                    .8631                             .8303 
901                                    .8686                             .8082 
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Class mixtures.  If it is wanted to evaluate, e.g., the degree of multidisciplinarity of a 
document, one approach is to sum up the ki of each class separately. Fig. 7 illustrates, in 
relation to this approach, the affiliations of the individual documents with the classes 1 
through 4, respectively. 
 
 

   

   
 
Fig.6.  Optimal linear mixtures (with nonnegative coefficients) of models for four documents. 
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Fig. 7.  Affiliations of the four documents with the four given classes. The sum of the bars in each 
subfigure is normalized to unity. 
 
 
 
 

5. Crucial test 
 
This paper is finally provided with a crucial test to demonstrate the degree of selectivity 
in finding out the components in the linear mixture. To that end the input vector x was 
formed as a sum of p models, p < n , which were picked up at random from all of the 
models, such that no model occurred twice or more often in this mixture. Then x was 
normalized. The SOM was the same as that used in Subsection 4.2. The fitting function 
was the lsqnonneg. 
 
Table 3 gives the value of the determinant det(M1 M1´) and the computing time (in 
seconds) for different numbers of models selected to the mixture that makes up x.  The 
fitting error in all of these cases was zero within the numerical accuracy of computation. 
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Table 3.  The determinant (see text) and the computing time for different numbers of models in x  
 
                      Models                          Determinant                  Computing time (seconds) 
 

           5                                   .0011                                        3 566 
         10                                    3.1 x 10-6                               10 258           
         50                                    3.3 x 10-44                              49 346 
       100                                    2.4 x 10-105                           100 170 
 

 
As one can see, the value of the determinant (which represents the degree of linear 
dependence of the components) is strongly reflected in the computing time. One may 
make a comparison with the computing times in Subsection 4.2., in which the number of 
components in the linear mixture was at most 18, and the computing time was at most 
3084 seconds, respectively. 
 
Finally, the fidelity of the fitting result (k) with x consisting of 100 models is 
demonstrated in Fig. 8.  
 
 

 
 
 
Fig. 8.  This picture identifies the 100 models included in x, and also displays the vector  k (linear mixture) 
of the models fitted to x. The fitting error was zero within the computing accuracy. 
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6. Conclusion 
 
The purpose of this presentation has been to extend the use of the SOM by showing that 
instead of a single ”winner,” one can define several “outputs” that together describe the 
input pattern more accurately. These “outputs” were defined to be the components in the 
linear mixture of SOM models that approximate to the input best in the sense of least 
squares. Only nonnegative weights in the fitting were allowed.  
 
In the light of the above experiments it looks evident that the approximation of the input 
by the optimal nonnegative-coefficient linear mixture of the SOM models contains more 
information than the mere location of the best-matching model can give. It is striking how 
few components are then needed. 
 
If the models fall into classes that are known a priori, the weights of the models in the 
mixture can be interpreted as expressing the degree to what the input is affiliated with the 
various classes. 
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