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Functional Elements and Networks in fMRI

Jarkko Ylipaavalniemi!, Eerika Savia!'?, Ricardo Vigario' and Samuel Kaski''? *
1- Helsinki University of Technology - Adaptive Informatics Research Centre
2- Helsinki University of Technology - Helsinki Institute for Information Technology
P.O. Box 5400, FI-02015 TKK - Finland

Abstract. We propose a two-step approach for the analysis of func-
tional magnetic resonance images, in the context of natural stimuli. In the
first step, elements of functional brain activity emerge, based on spatial
independence assumptions. The second step exploits temporal covariation
between the elements and given features of the natural stimuli to identify
functional networks. The networks can have complex activation patterns
related to common task goals.

1 Introduction

Functional magnetic resonance imaging (fMRI) is one of the most successful
methods for studying the living human brain. Traditionally, its analysis relies on
artificially generated stimuli, coupled with generic statistical signal processing,
in clear hypothesis-driven setups. The rising interest in natural stimuli studies
calls for the development of new processing approaches.

Completely data-driven methods, when applied to natural uncontrolled stim-
uli, will discover all active brain processes, regardless of the study’s research
questions. In this work we propose a two-step approach, where independent com-
ponent analysis (ICA) finds spatially independent functional elements, whereas
nonparametric dependent component analysis (DeCA') collects them into net-
works related to the natural stimulation. The processing framework is schemat-
ically shown in Figure 1.

Related canonical correlation approaches have been previously suggested for
fMRI [1, 2, 3]. Yet, no method has dealt with natural stimuli, since all experi-
ments rely on non-overlapping block designs. Furthermore, the novel functional
framework introduced in this paper extends the interpretation ability of the
analyses.

2 Material and Methods

The experiments use a dataset from a recent competition organized by the Uni-
versity of Pittsburgh [4]. The data consists of fMRI recordings of three subjects
as they viewed short film clips and a set of features describing the stimulus.

*This work was partly supported by the IST Programme of the European Community,
under the PASCAL Network of Excellence, IST-2002-506778. This publication only reflects
the authors’ views.

IDeCA generalizes canonical correlation analysis (CCA).
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Fig. 1: The proposed framework: elements of functional brain activity emerge
from the data via ICA. Functional networks are revealed by DeCA, based on
covariation between the elements and task goals, encoded as features.

2.1 Natural Stimulus fMRI Recordings

Data related to the first subject viewing the first movie clip was analyzed. It
consists of 20 minutes of continuous fMRI measurements. Whole head volumes
were acquired with a 3T scanner using an EPI sequence (TR=1.75s, TE=25ms,
slice=3.5mm, FOV=210mm, flip=76°), resulting in 64x64x34 voxels per vol-
ume, for 858 time points.

Preprocessing provided by the competition organizers included motion cor-
rection, slice time correction, linear trend removal, and spatial normalization of
the volume data. Then the cortical surface was extracted and morphed into a
smooth inflated surface containing 238735 vertices. Additionally, we retained
only 641 time points of the data that contained actual movie viewing.

2.2 Features of Natural Stimulus Data

The film clips, i.e., the natural stimuli, were described with 29 features in the
dataset. Some of the features were quantitative, such as brightness or rms sound,
measuring image intensity and root-mean-square sound amplitude, respectively.
On the other hand, most of the features were more qualitative, e.g., laughter
and sadness, based on subjective labelings given by the viewers. There were
strong correlations among the 29 features. From strongly correlating pairs of
features we always selected only one to the experiment. Brain activity related
to observing other people’s actions is of particular interest, so we combined
the original actor-specific features (e.g., al and brad) into a single new feature
people by taking their maximum value. We left out features related to places
(e.g., kitchen and backyard).

The resulting set of 9 features was attention, brightness, faces, food, language,
laughter, rms sound, sadness and people, shown in Figure 2. Each feature was



normalized to have zero mean and unit variance.
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Fig. 2: The 9 features of natural stimuli as functions of time.

2.3 Independent Component Analysis

Independent component analysis (ICA) [5] is one of the most popular methods
for solving the blind source separation (BSS) problem in a purely data-driven
manner. BSS consists of finding solutions to the mixture X = AS, where only
the observed data X is known. ICA assumes only statistical independence of
sources S, and full rank of mixture A. Independence is considered here in the
spatial domain, and the mixing reveals the temporal activation patterns of the
corresponding sources [6].

Here we use a reliable ICA approach, proposed in [7], based on multiple
runs of FastICA [5], in a bagging framework, i.e., with resampled data and
randomized initializations.

Suitable parameter values for FastICA were selected heuristically, based on
performance, overfitting avoidance, and computation requirements. We used
tanh nonlinearity in symmetric mode looking for 25 independent components in
the initially 50 dimensional whitened space. The bootstrapping used a sampling
of 25% with correlation threshold of 0.8 and power 4 (see [7] for details on
implementation). The reliable ICA included 100 runs and mean representatives
of the 25 most reliable components were selected as potential functional elements.

2.4 Nonparametric Dependent Component Analysis

Our goal is to find the underlying factors that are common for two paired
datasets, the independent components of brain activity and the features of natu-
ral stimuli. Obviously, in both datasets there is also variation that is not shared
and we try to distinguish between common and unshared variations. A classical
method for this task is the canonical correlation analysis (CCA) [8], which has
been shown to maximize mutual information for Gaussian data [9]. In this study
the data is far from Gaussian, so we used nonparametric dependent component
analysis (DeCA) [10]. It maximizes a dependency estimate between the two
datasets y and z:
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where w are the parameters that define the components (linear projection direc-
tions) and ¢ denote Parzen estimators of the density of the projected data. The
summation is taken over the samples. Intuitively, if the two projected datasets
would be near to independent, the estimator of joint density g,. would roughly
factorize to the product gyg. of the marginals, resulting in zero cost. DeCA
looks for projections that are as far from this situation as possible. Multiple
components were computed in a deflation manner, looking for one component
at a time and removing the found component from the data before looking for
the next one.

We run DeCA 20 times from different initializations and took the best solu-
tions according to the cost function. If the next best projections had the same
kind of profile we averaged the solution over them.

3 Results

Consistent with previous studies, the reliable independent components in Fig-
ure 3 represent spatially independent functional regions of the brain. For exam-
ple, component with index 3 (IC3) corresponds to the sensory auditory areas in
the superior temporal lobes of both hemispheres, whereas 1C20 corresponds to
the anterior cingulate gyrus. Interpretations for all the components is out of the
scope of this paper.

Two illustrative functional networks identified by the method are shown in
Figure 4, corresponding to the first dependent component, and Figure 5, cor-
responding to the fourth dependent component. In both cases, 6 independent
components with the highest loading values are shown, sorted according to the
absolute loading values. High absolute loading value means that the correspond-
ing IC or stimulus feature contributes significantly to the respective dependent
component. The first network comprises areas corresponding to, e.g., auditory
(IC3), visual (IC12), and multi-modal integration (IC24). This suggest that the
functional role of the network is related to combining information from many
sensory inputs. Indeed, the four highest scoring features of the dependent compo-
nent are attention, people, brightness and language. The second network includes
areas related to, e.g., language processing (IC3 and IC5) and face recognition
(IC8). Additional information can again be drawn from the four highest scoring
features language, faces, laughter and attention.

4 Discussion

We introduced a two-step approach to the identification of networks of functional
brain activity. The method was tested on fMRI recordings of brain responses
to natural stimuli. The found networks seem plausible, considering the very
subjective and unreliable nature of the available goal settings. Different networks
partially shared individual elements, each with a clear functional contribution to
the network’s common goal. More controlled studies are being planned to verify
the results and to further develop the approach.
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Fig. 3: Overview of 25 independent components representing spatially indepen-
dent functional brain regions. The index of each component is shown in the
middle of each square. Lateral and medial views of both hemispheres of the
inflated cortex are shown. The cortex anatomy in light gray shades and the
activation pattern superimposed with dark (yellow and blue gradients in color
version).

Fig. 4: (a) The 6 ICs (from Fig. 3) corresponding to the highest loadings in the
first dependent component. The loading value is shown in the middle of each
square. (b) Respective loadings of the stimulus features.
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Fig. 5: (a) The 6 ICs (from Fig. 3) corresponding to the highest loadings in the
fourth dependent component. (b) Respective loadings of the stimulus features.
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