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Hyperparameter Adaptation in Variational

Bayes for the Gamma Distribution

Harri Valpola and Antti Honkela

September 14, 2006

Abstract

Gamma distribution is often used as a prior for the precision (in-
verse variance) of the Gaussian distribution as it is the conjugate prior.
If the scale of the underlying Gaussian variables is not known a priori,
it is sensible to use an empirical Bayes approach to adapt the para-
meters of the prior. In this note we present a highly convergent fixed
point iteration for estimating these parameters using type II maximum
likelihood, that is maximising the marginal likelihood, in the context
of variational Bayesian learning.

Let us consider the problem of hyperparameter adaptation or type II max-
imum likelihood estimation of the parameters of the gamma distribution.
Given dataset D, we have a model H with parameters θ. We are interested
in a subset λ = (λi)

N
i=1 ⊂ θ of the parameters. These parameters have a

common gamma prior with

p(λi|α, β) = Gamma(λi; α, β) =
βα

Γ(α)
λα−1

i e−βλi

=
βα

Γ(α)
exp
(

(α− 1) log λi − βλi

)

, i = 1, . . . , N.

(1)

The latter form presents the gamma distribution as an exponential family
with natural parameters

(

(α − 1),−β
)

and sufficient statistics
(

log λi, λi

)

.
Parameters such as λi are often used to model the precision (inverse variance)
of Gaussian variables, because gamma distribution is the conjugate prior for
the precision of a Gaussian. An example of such a model in the context of
variational Bayes can be found in [1].
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In general learning systems it may be difficult to know the correct scale of
values for parameters in advance and thus it is often useful to apply an em-
pirical Bayes approach to adapt the prior parameters. By type II maximum
likelihood we mean finding such values for α and β that they maximise the
marginal likelihood p(D|H, α, β). As the exact marginal likelihood is intract-
able, we use a lower bound obtained by variational Bayes (VB) approxima-
tion [1, 2]. We assume a factorial approximation

q(λ|α̂, β̂) =
N
∏

i=1

q(λi|α̂i, β̂i), (2)

where α̂i and β̂i are the variational parameters of the gamma distribution
of the approximation for λi. The approximation is fitted by minimising the
variational free energy1

C =

〈

log
q(θ)

p(D,θ|H)

〉

= 〈log q(θ)− log p(D|θ,H)− log p(θ|H)〉 , (3)

where 〈·〉 denotes expectation over the approximation q(θ). If the likeli-
hood of λi is also in the conjugate exponential family, the approximations
q(λi|α̂i, β̂i) can be easily updated by variational EM [3].

For the purpose of adapting α and β, the relevant terms of the variational
free energy can now be derived using the expected values of the sufficient
statistics of the gamma distribution,

〈λi〉 =
α̂i

β̂i

(4)

〈log λi〉 = Ψ(α̂i)− log β̂i, (5)

where Ψ(x) = d
dx

log Γ(x) is the digamma function. The part involving α and
β thus becomes

C(α, β) =
〈

− log p(λ|α, β)
〉

q(λ|α̂,β̂)
=

N (log Γ(α)− α log β) +
N
∑

i=1

[

(1− α)
(

Ψ(α̂i)− log β̂i

)

+ β
α̂i

β̂i

]

. (6)

We now seek to minimise Eq. (6) by finding a zero of the gradient. Differen-
tiating Eq. (6) with respect to β yields

∂C

∂β
= −N

α

β
+

N
∑

i=1

α̂i

β̂i

. (7)

1Free energy is equal to minus the variational lower bound.
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Setting this to zero yields

β = α
N

∑N

i=1
α̂i

β̂i

= αT, (8)

where T = N
PN

i=1

α̂i

β̂i

.

Substituting this back to Eq. (6) yields

C(α, Tα) = N
(

log Γ(α)− α log(Tα)
)

+

N
∑

i=1

[

(1− α)
(

Ψ(α̂i)− log β̂i

)

+ Tα
α̂i

β̂i

]

. (9)

Differentiating Eq. (9) with respect to α yields

dC

dα
= N

(

Ψ(α)− log(Tα)− 1
)

+
N
∑

i=1

[

T
α̂i

β̂i

−
(

Ψ(α̂i)− log β̂i

)

]

= N
(

Ψ(α)− log α− log T − 1 + 1
)

−
N
∑

i=1

(

Ψ(α̂i)− log β̂i

)

.

(10)

Setting this to zero and dividing by N yields

log α−Ψ(α) =
1

N

N
∑

i=1

(

log β̂i −Ψ(α̂i)
)

− log T. (11)

Since log α−Ψ(α) ≈ 1
2α

, the following form could be used as an approximate
solution:

(α ≈)
1

2
(log α−Ψ(α))−1 =

1

2

(

1

N

N
∑

i=1

(

log β̂i −Ψ(α̂i)
)

− log T

)−1

. (12)

However, by moving the terms to the same side and adding α we get a fixed
point equation which yields an exact solution iteratively:

α = f(α)

= α +
1

2
(Ψ(α)− log α)−1 +

1

2

(

1

N

N
∑

i=1

(

log β̂i −Ψ(α̂i)
)

− log T

)−1

.

(13)
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This converges, because 0 < f ′(α) < 1
2

for all α > 0.

Thus we get a global fixed point iteration:

α←α +
1

2
(Ψ(α)− log(α))−1

+
1

2

(

1

N

N
∑

i=1

(

log(β̂i)−Ψ(α̂i)
)

− log

(

N
∑N

i=1
α̂i

β̂i

))−1

(14)

β ←α
N

∑N

i=1
α̂i

β̂i

(15)

References

[1] H. Lappalainen and J. Miskin, “Ensemble learning,” in Advances in In-

dependent Component Analysis (M. Girolami, ed.), pp. 75–92, Berlin:
Springer-Verlag, 2000.

[2] T. S. Jaakkola, “Tutorial on variational approximation methods,” in Ad-

vanced Mean Field Methods: Theory and Practice (M. Opper and D. Saad,
eds.), pp. 129–159, Cambridge, MA, USA: The MIT Press, 2001.

[3] Z. Ghahramani and M. Beal, “Propagation algorithms for variational
Bayesian learning,” in Advances in Neural Information Processing Sys-

tems 13 (T. Leen, T. Dietterich, and V. Tresp, eds.), pp. 507–513, Cam-
bridge, MA, USA: The MIT Press, 2001.

4


	HYPERPARAMETER ADAPTATION IN VARIATIONAL 

