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Abstract

Nonlinear dimensionality reduction has so far been treettfter as a data rep-
resentation problem or as a search for a lower-dimensioaaifoid embedded
in the data space. Neither approach has been designed toizgpthe visualiza-
tion capability, although information visualization isrhaps the main application.
We conceptualize visualization as an information retfi@vablem; a projection
is good if neighbors of data points can be retrieved well Basethe visualized
projected points. This makes it possible to rigorously dif\agoodness in terms
of precision and recall. A method is introduced to optimietrieval quality; it
turns out to be an extension of Stochastic Neighbor Embegddime of the earlier
nonlinear projection methods, which focuses only on recall

1 Introduction

Early nonlinear projection methods introduced a repredimt for the data and optimized the rep-
resentations to minimize representation error. Most caimteepreted as multidimensional scaling
(MDS) methods [2] which minimize some measure of preseswatif pairwise distances between
data points.

More recently, there has been a lot of interest in methodscthastruct the projection by searching
for data manifolds embedded in the original data space. dpofi?] infers the manifold through
local neighborhood relationships, and visualizes it by MD&cally Linear Embedding (LLE) [9]
approximates the manifold locally by linear surfaces; bapn Eigenmap (LE) [1] and Hessian
Eigenmap (HLLE) [4], are very similar but based on graph thiedlignment of Local Models
(ALM) [13] and other similar approaches first fit local modédsthe data and then search for a
transformation that aligns them globally. Finally, there enore heuristically derived but surpris-
ingly well-performing algorithms, such as the Curvilin€amponents Analysis [3].

In visualization applications, a problem with all the medhdisted above is that they have not been
designed for visualization. The cost functions of data@epntation methods, which measure for
instance preservation of pairwise distances, are onlyeaatly related to the goodness of the re-
sulting visualization. Manifold search methods, on thesotiiand, have been designed to find the
“true” manifold which may be higher than two-dimensionahieh is the upper limit for visual-
ization in practice. Hence, evaluating goodness of vigatibns seems to require usability studies
which would be laborious and slow.

In this paper we view the visualization from the user persipecas an information retrieval problem.
Assume that the task of the user is to understand the proxieliationships in the original high-
dimensional data set, and the task of the visualizationrikgo is to construct a display that helps



in this task. For a given data point, the user wants to knovelwbther data points are its neighbors,
and the visualization should reveal this for all data pgiasswell as possible. If this task description
matches what the user is doing, our analysis gives rigorousgls for constructing a visualization
algorithm.

Any visualization algorithm will make two kinds of errorso®e neighbors will be missed (which
reducegecall) and some non-neighbors will be visualized as neighborscfwteducegprecision).

In information retrieval it is traditional to evaluate sgsts based on curves of precision vs. recall,
or optimize the system to minimize some combination of the teasures. Our suggestion is to do
the same in visualization.

It turns out (details below) that one of the manifold exti@ettmethods, Stochastic Neighbor Em-
bedding (SNE) [5], can be interpreted to optimize a smootherdion of recall. In this paper we
introduce a measure of precision to the algorithm, and dpéim parametrized compromise between
the two. In the resulting Neighbor Retrieval Visualizer BNg the compromise can be tuned accord-
ing to the relative costs of the two criteria. It turns outtttiee method outperforms its alternatives
on a wide range of values of the compromise parameter.

2 Stochastic Neighbor Embedding

The SNE algorithm [5] was originally motivated as a methodgtacing a set of objects into a
low-dimensional space in a way that preserves neighbotitteesn Such a projection does not try
to preserve pairwise distances as such, as MDS does, beadhgteprobabilities of points being
neighbors.

A probability distribution is defined in the input space, &sn the pairwise distances, to describe
how likely it is that the point is a neighbor of poinj. The same is done in the low-dimensional
output or projection space. The algorithm then optimizesdabnfiguration of points in the output
space, such that the original distribution of neighbornesgpproximated as closely as possible in
the output space. The natural measure of approximationleeteveen distributions is the Kullback-
Leibler (KL) divergence, which is averaged over all points.

More formally, the probability;; of the point: being a neighbor of point in the input space is
defined to be
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whered(x;,x;) is the Euclidean distance between the data paintandx;. The width of the

Gaussiang;, is set either manually or by fixing the entropy of the disttibn. Setting the entropy

equal tolog k sets the “effective number or neighbors’ito

Similarly, the probability of the point being a neighbor of point in the output space is defined to
be
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The SNE algorithm searches for the configuration of pagintdhat minimizes the Kullback-Leibler
divergenceD between the probability distributions in the input and aigpaces, averaged over all

points. The cost function is
Dij
Esne = E;i[D(pi, qi)] o E D(pi, qi) = E E pij log #’ 3)
i i j#i K

whereFE; is the average over data samples

Relationship to recall. It turns out that SNE has an interpretation as an informat@irieval
algorithm; it optimizes a smoothed form of recall as we whlb&/ next. Assume that the user wants
to retrieve neighbors of each data point, and do that withhéie of the visualization (output space)
only.



To show the connection we need to define neighborhoods adustefions. The user is studying
neighbors in the output space, and her goal is to find a largeoption of thek “true” neighbors,
that is, neighbors in the input space.

Technically, we assume thieclosest points to be neighbors with a high probability ardréist with
a very low probability. Define

b= 2% _ otherwise 4

» { a= 1%5 if point j is among thé: nearest neighbors éfin the input space
ij =
N—k-—1"

whereN is the total number of data pointsijs the size of the desired neighborhood éind § < 0.5
gives the non-neighbors a very small probability.

Similarly, we define the probability gfbeing a neighbor of in the output space by

o J o= 1%5 if point j is among the nearest neighbors aéfin the visualization
%=\ d= y2=, otherwise ’
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wherer is the neighborhood size in the output space.
Now each Kullback-Leibler divergence in the cost functian de divided into four parts,

D(pi,q;) = Z alOg%-ﬁ- Z alog%—i— Z blog%—i— Z blogg

Pij=0,qij=c pij=a,qij=d pij=b,q;j=c pij=b,qi;=d
= CtpN1p + CwmissNmiss + CrpNep + CtnNTn. (6)

Here Ntp is the number of true positives, that is, points where théabdity of being a neighbor

is high in both spaces. The number of misses, points not beingen for retrieval because of a
low probability in the output space although the probapilit the input space is high, &wss.
The number of false positives iSgp; high in the output space but low in the input space. Finally
the number of true negatives (low in both spacesNig. The C are the constant coefficients;
Ctp = (1 —9)/klog(r/k), and the rest analogously.

It is straightforward to check that i is very small, then the coefficients for the misses and false
positives dominate the cosisng, and moreover

D(pi, qi) = CmissNwiss + CrpNgp =
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whereC' is a constant. This is the cost function SNE would try to mia&m and hence it would
maximize recall which is defined as

Nrp i NMISS. )

recall=
k

In summary, with a step function as a neighborhood distidioythe SNE would optimize average
recall. This result is mainly theoretical, however, sinptimization with such step functions would
be very difficult in practice. Instead, SNE uses a Gaussidaghberhood function which can be
interpreted as a smoothed step function. With the Gausk&retall turns into a smoothed recall
which takes takes into account the sizes of the errors asawdiieir number.

3 Neghbor Retrieval Visualizer

Understanding SNE in the information retrieval sense opexg avenues for improving it. SNE
maximizes (smoothed) recall, and it is well known that mazing recall typically leads to low
precision, and vice versa. In other words, SNE only optismizee end of the spectrum.



If we want to maximize precision, we can reverse the direatibthe Kullback-Leibler divergence
in (3). For step functions and for small it is straightforward to show, analogously to the previous
section, that

N
D(qilp) ~ —=C. (9)

whereNrp is the number of false positives ands the number of retrieved points. Minimizing this
would correspond to maximizing precision defined as
Nrp

precision= 1 — pat (10)

Hence, by reversing the direction of the Kullback-Leibléredgence in the cost function we get
a method that focuses on gaining a high precision. Again, auddcswitch to Gaussian neighbor
distributions instead of step functions, to get an algamithat is analogous to SNE but that would
maximize smoothed precision instead of smoothed recall.

In practice it would be best to optimize a compromise. If wa aasign a relative costto misses
and(1 — \) to false positives, then the total cost function to be optedishould be

Enerv = AE;[D(pi, qi)] + (1 — A\ E;[D(qi, pi)]

Dij dij
=AY pilog = +(1-X)) > ailog -t (11)
PRy qij PRy Dij
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For step functions and small this would reduce to the total information retrieval cosiddor
Gaussian functions as in SNE it can be interpreted as a sedotist. We call the new method that
optimizes (11)Neighbor Retrieval Visualizer (NeRV), since it interprets the visualization problem

as a problem of retrieving neighbors based on the visuaizat

By setting the parameter € [0, 1] we choose whether we want to focus more on the probabilities
that are high in the input space (recall) or in the output sgpcecision). When = 1 the method
becomes SNE and when= 0 it focuses purely on avoiding false positives.

We optimize the cost function using a conjugate gradienhogkt A heuristic but very effective
way of avoiding local minima is to initialize the optimizati by starting with a large width of the
Gaussiang?, and reducing it stepwise after each optimization sted tirifinal value is reached.
After this initialization, normal conjugate gradients ame with a fixed Gaussian.

4 Empirical Comparison

We compared the performance of NeRV to alternative methondkree data sets; the first is a small
artificial set and the two others very high-dimensional-eatld sets.

Thick S-curve. The first data set is a simple toy set sampled from a foldeddmaensional man-
ifold, a two-dimensional S-shaped curve in a three-dinmradispace. The 1000 data points were
constructed as follows. First, the data was uniformly s@sfiom a two-dimensional S-shaped
sheet. Then, to give the manifold a thickness, a sphericahalty distributed displacement was
added to each point.

Mouse gene expression. The second data set is a collection of gene expression [ dfoen
different mouse tissues [11]. Expression of over 13,000seayenes had been measured in 45
tissues. We used an extremely simple filtering method, aimtd that originally used in [11], to
select the genes for visualization. Of the mouse geneslgléarerage difference in Affymetrix
chips, AD> 200) expressed in at least one of the 45 tissues (dimensiorem)d@m sample of 1600
genes (points) was selected. After this the variance in Bssihe was normalized to unity.

Gene expresson compendium. The third data set is a large collection of human
gene expression arrays [10]. (The normalized expressianpeadium is available from
http://dags. st anford. edu/ cancer.) Since the current implementations of all methods
do not tolerate missing data we removed samples with misgihges altogether. First we removed
genes that were missing from more than 300 arrays. Then weveshthe arrays for which values
were still missing. This resulted in a data set containing8Loints and 1339 dimensions.



Methods. The performance of NeRV was compared with the following disienality reduction
methods: Principal Component Analysis (PCA) [6], metricliRimensional Scaling (MDS) [2],
Locally Linear Embedding (LLE) [9], Laplacian Eigenmap (LE], Hessian Eigenmap (HLLE) [4],
Isomap [12], Alignment of Local Models (ALM) [13], Curvilear Component Analysis (CCA) [3]
and Curvilinear Distance Analysis (CDA) [8], which is a \aart of CCA that uses graph distances
to approximate the geodesic distances in the data.

Each method that has a parametdior setting the number of nearest neighbors was tested with
values ofk ranging from 4 to 20, and the value producing the best residsselected. Methods
that may have local optima were run 10 times with differemid@m initializations and the best
run was selected. For the NeRV algorithm we set the effeativaeber of neighbors to 20 (without
optimizing it further).

4.1 Results

We used three pairs of performance measures to compare thedseThe first one comes directly
from the NeRV cost functionE;[D(p;, ¢;)] measures smoothed recall aBg D(q;, p;)] smoothed
precision. We plot the results all methods on the plane sp@dby the two measures. NeRV forms
a curve parametrized by (Fig. 1 top row). NeRV was clearly the best performing metbadall
three data sets, using this pair of measures.

Although the NeRV cost function is arguably a measure woptinuizing, we verified the results
with two other sets of performance measures. Since our ataiivcomes from information retrieval
we will plot standard precision—recall curves, as a functibthe number of neighbors chosen from
the output space. Finally we will use a pair of measures thahalogous to our smoothed preci-
sion and recall, namely the trustworthiness and continusid in [7]. Trustworthiness measures
how many of the neighbors defined in the output space are peigtalso in the input space, and
continuity the other way around. Errors are penalized alingrto the rank distance from the neigh-
borhood.

The precision-recall behavior of the methods is illusttate the middle row of Figure 1. For
computational reasons the curves are obtained by vary@nguitmber of retrieved neighbors, without
re-computing the visualizations, although we know thatbest results the effective number of
neighbors in the width of the Gaussian smoother should nmtaimumber of retrieved neighbors.
Hence the results will not be optimal.

In the precision-retrieval curves, usually wheis small the precision becomes higher in the leftmost
end of the curve (where the number of retrieved neighbore@lsthan with a large.. Analogously,

a large) seems to lead to better precision in the rightmost end. Bhiteiar on the thick s-curve
data set as well as on the mouse gene expression data setinttlésr why the best precision is
achieved with\ = 1 on the gene expression compendium. The CDA algorithm paddrvery well

in terms of precision, being the best on all three data seflsyfed by CCA and NeRV. NeRV with

A = 1 gained the best recall values on the two bioinformatics dets but was superseded slightly
by PCA on the thick s-curve data set.

The results of the trustworthiness and continuity meagqiigsl, bottom row) are very similar to the
ones from the Kullback-Leibler plots in the top row. One éliince is that on the two bioinformatics
data sets the highest trustworthiness was gained witalue that was in the middle of the scale.
One explanation for this could be the differences in the d&fimof the neighborhood between
the trustworthiness measure and cost function of NeRV. Hightorhood in the trustworthiness
measure is defined as a step function instead of a smootmaoons function that covers all the
data, like in NeRV. Moreover, the trustworthiness measwesdot care about what happens to the
points that are correctly inside the neighborhood. Thus\Ne$es resources in reducing errors that
the trustworthiness measure does not care about. This)gi¢aires why selecting = 0orA =1

is not always the best choice to maximize trustworthinegoatinuity, respectively.

5 Demonstrations

To illustrate how the\ affects the NeRV results in practice, we used a difficult destation data
set. The points are sampled uniformly from the surface ofeettdimensional sphere, and they are
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Figure 1: KL-KL curves (top), precision—recall curves (ailig) and trustworthiness—continuity
curves (bottom) for different values of on three data sets. Other nonlinear projection methods
have been added for reference. The precision—recall cinaws been calculated with 20 nearest
neighbors in the input space as the set of relevant itemstendumber of retrieved items (neigh-
bors) is varied from 1 to 100. Only the reference methodsablaieved the highest precision and the
highest recall are included for clarity. The KL-KL curve athé trustworthiness-continuity curve
are calculated using 20 nearest neighbors. On each ploesigbrformance is in the top right cor-
ner. PCA: Principal Component Analysis, MDS: metric Multiiznsional Scaling, LLE: Locally
Linear Embedding, Eigenmap: Laplacian Eigenmap, CCA: {inear Component Analysis, CDA:
CCA using geodesic distances, HLLE: Hessian Eigenmap, AAkgnment of Local Models.

to be projected to two dimensions. A perfect mapping is @édifuimpossible, and a compromise
is needed. Figure 2 illustrates that NeRV with small value alits the sphere open to avoid false
positives, resembling a geographical projection, whefeakrge A the sphere is squashed flat to
minimize misses, resembling a linear projection. Note thatlatter extreme corresponds to SNE,
whereas the former resembles the results of CCA and CDA.

As a more practical demonstration we visualized the docusnieom the NIPS 2001-2003 con-
ferences. The data vectors are histograms of log word connte documents, available from
http://ai.stanford.edw/gal/. Such a display, optimized to maximize performanceirieval of sim-
ilar documents, could in practice be used by conferencenizges to interactively define sessions
and to choose referees. In both tasks a lot of prior knowledderally needs to be used, and the
visualization might help in grasping the big picture, comgakto the alternative of using pure infor-
mation retrieval without such visualizations.

The four sub-images on the left side of Figure 3 show that tHeSN\tracks are reasonably well
clustered on the display, providing evidence that the diverder is probably sensible. We finally
tested the system by mapping this paper to the display, slovthe right. The paper is in a very



Figure 2: Two nonlinear projections of data that lies on tindage of a sphere to two dimensions.
One of the input coordinates governs the rotation of thelidythe second their scale, and the third
their degree of elongation. As a result, similarity of thgpiis indicates that the corresponding
points are close to each other in the input space. Onefhel = 0, the sphere has become split
open and the glyphs change smoothly, but on the oppositeadnitie projection there are similar
glyphs that are projected far from each other. Onrilght A = 1, the sphere has been squashed
flat. There are areas where the different kinds of glyphs lsedo each other, but there are no
areas where similar glyphs are very far from each other. @msgnall portion of the points used for
computing the mapping are shown for clarity.

relevant area, containing many of the information visuion papers earlier presented in NIPS. It
lies some distance away from the mass, however. It remaibe 8een whether the distance is an
indication of a significant new result or of something else.
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Figure 3: Documents from the NIPS 2001-2003 conferencgegienl onto a plane. On the left
side, documents from one of the NIPS tracks are highlighteditzles in each sub-image, and
the rest of the documents are marked by dots. Top left: Aflgor$ and architectures; Top right:
Control and reinforcement learning, Bottom left: Learnthgory; Bottom right: Neuroscience.
Right half: Enlarged view of the area marked by the rectaaglthe left. This area contains most of
the documents related to dimensionality reduction, méshifearning or information visualization
(circles); titles of a few documents are shown. The five papleat were presented in the 2002
spotlight session on dimensionality reduction and madifearning are marked with squares. The
current paper is in the top right corner; it has been markeid the label NeRV.



6 Discussion

We have introduced a new rigorous principle for optimizirapiinear projections. The visualiza-
tion task was conceptualized as neighbor retrieval, foateal as an information retrieval problem.
The cost function measures the total cost of misses andgalsidves. We introduced an algorithm
called NeRV (Neighbor Retrieval Visualizer) that extenks earlier Stochastic Neighbor Embed-
ding method.

NeRV outperformed alternatives clearly for all three dats sve tried, and for two cost functions.
By the third cost function NeRV was among the best but not arciénner.

The weak point of NeRV is that it is computationally demamgditVe have not analyzed the con-
vergence properties but each gradient step(i3’) whereN is the number of data points, whereas
some of the alternatives are or@) N?). Moreover, the cost function has local minima, in contrast
to some alternatives which have a convex cost function.

In this paper we have assumed that the user chooses the aomerdoetween precision and recall,
governed by the parameter It would be nice to be able to optimize it, but the optimimativould
increase the computational complexity. Choice of the vafueis not a critical step, however, since
NeRV outperforms the alternatives on a wide range of itsealu

The visualizations could still be improved for interactivge with a simple additional visualization
method. Given that the user selects a point on a displayatbe positives in its neighborhood, and
misses that are farther apart could be highlighted by spggpmabols.
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