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Abstract

Nonlinear dimensionality reduction has so far been treatedeither as a data rep-
resentation problem or as a search for a lower-dimensional manifold embedded
in the data space. Neither approach has been designed to optimize the visualiza-
tion capability, although information visualization is perhaps the main application.
We conceptualize visualization as an information retrieval problem; a projection
is good if neighbors of data points can be retrieved well based on the visualized
projected points. This makes it possible to rigorously quantify goodness in terms
of precision and recall. A method is introduced to optimize retrieval quality; it
turns out to be an extension of Stochastic Neighbor Embedding, one of the earlier
nonlinear projection methods, which focuses only on recall.

1 Introduction

Early nonlinear projection methods introduced a representation for the data and optimized the rep-
resentations to minimize representation error. Most can beinterpreted as multidimensional scaling
(MDS) methods [2] which minimize some measure of preservation of pairwise distances between
data points.

More recently, there has been a lot of interest in methods that construct the projection by searching
for data manifolds embedded in the original data space. Isomap [12] infers the manifold through
local neighborhood relationships, and visualizes it by MDS; Locally Linear Embedding (LLE) [9]
approximates the manifold locally by linear surfaces; Laplacian Eigenmap (LE) [1] and Hessian
Eigenmap (HLLE) [4], are very similar but based on graph theory; Alignment of Local Models
(ALM) [13] and other similar approaches first fit local modelsto the data and then search for a
transformation that aligns them globally. Finally, there are more heuristically derived but surpris-
ingly well-performing algorithms, such as the CurvilinearComponents Analysis [3].

In visualization applications, a problem with all the methods listed above is that they have not been
designed for visualization. The cost functions of data representation methods, which measure for
instance preservation of pairwise distances, are only indirectly related to the goodness of the re-
sulting visualization. Manifold search methods, on the other hand, have been designed to find the
“true” manifold which may be higher than two-dimensional, which is the upper limit for visual-
ization in practice. Hence, evaluating goodness of visualizations seems to require usability studies
which would be laborious and slow.

In this paper we view the visualization from the user perspective, as an information retrieval problem.
Assume that the task of the user is to understand the proximity relationships in the original high-
dimensional data set, and the task of the visualization algorithm is to construct a display that helps
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in this task. For a given data point, the user wants to know which other data points are its neighbors,
and the visualization should reveal this for all data points, as well as possible. If this task description
matches what the user is doing, our analysis gives rigorous grounds for constructing a visualization
algorithm.

Any visualization algorithm will make two kinds of errors: Some neighbors will be missed (which
reducesrecall) and some non-neighbors will be visualized as neighbors (which reducesprecision).
In information retrieval it is traditional to evaluate systems based on curves of precision vs. recall,
or optimize the system to minimize some combination of the two measures. Our suggestion is to do
the same in visualization.

It turns out (details below) that one of the manifold extraction methods, Stochastic Neighbor Em-
bedding (SNE) [5], can be interpreted to optimize a smoothedversion of recall. In this paper we
introduce a measure of precision to the algorithm, and optimize a parametrized compromise between
the two. In the resulting Neighbor Retrieval Visualizer (NeRV) the compromise can be tuned accord-
ing to the relative costs of the two criteria. It turns out that the method outperforms its alternatives
on a wide range of values of the compromise parameter.

2 Stochastic Neighbor Embedding

The SNE algorithm [5] was originally motivated as a method for placing a set of objects into a
low-dimensional space in a way that preserves neighbor identities. Such a projection does not try
to preserve pairwise distances as such, as MDS does, but instead theprobabilities of points being
neighbors.

A probability distribution is defined in the input space, based on the pairwise distances, to describe
how likely it is that the pointi is a neighbor of pointj. The same is done in the low-dimensional
output or projection space. The algorithm then optimizes the configuration of points in the output
space, such that the original distribution of neighbornessis approximated as closely as possible in
the output space. The natural measure of approximation error between distributions is the Kullback-
Leibler (KL) divergence, which is averaged over all points.

More formally, the probabilitypij of the pointi being a neighbor of pointj in the input space is
defined to be

pij =
exp (−

d(xi,xj)
2

σ2

i

)
∑

k 6=i exp (− d(xi,xk)2

σ2

i

)
, (1)

whered(xi,xj) is the Euclidean distance between the data pointsxi andxj . The width of the
Gaussian,σi, is set either manually or by fixing the entropy of the distribution. Setting the entropy
equal tolog k sets the “effective number or neighbors” tok.

Similarly, the probability of the pointi being a neighbor of pointj in the output space is defined to
be

qij =
exp (−

‖yi−yj‖
2

σ2

i

)
∑

k 6=i exp (− ‖yi−yk‖2

σ2

i

)
. (2)

The SNE algorithm searches for the configuration of pointsyi that minimizes the Kullback-Leibler
divergenceD between the probability distributions in the input and output spaces, averaged over all
points. The cost function is

ESNE = Ei[D(pi, qi)] ∝
∑

i

D(pi, qi) =
∑

i

∑

j 6=i

pij log
pij

qij

, (3)

whereEi is the average over data samplesi.

Relationship to recall. It turns out that SNE has an interpretation as an informationretrieval
algorithm; it optimizes a smoothed form of recall as we will show next. Assume that the user wants
to retrieve neighbors of each data point, and do that with thehelp of the visualization (output space)
only.
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To show the connection we need to define neighborhoods as stepfunctions. The user is studyingr
neighbors in the output space, and her goal is to find a large proportion of thek “true” neighbors,
that is, neighbors in the input space.

Technically, we assume thek closest points to be neighbors with a high probability and the rest with
a very low probability. Define

pij =

{

a ≡ 1−δ
k

, if point j is among thek nearest neighbors ofi in the input space
b ≡ δ

N−k−1 , otherwise
, (4)

whereN is the total number of data points,k is the size of the desired neighborhoodand0 < δ < 0.5
gives the non-neighbors a very small probability.

Similarly, we define the probability ofj being a neighbor ofi in the output space by

qij =

{

c ≡ 1−δ
r

, if point j is among ther nearest neighbors ofi in the visualization
d ≡ δ

N−r−1 , otherwise
, (5)

wherer is the neighborhood size in the output space.

Now each Kullback-Leibler divergence in the cost function can be divided into four parts,

D(pi, qi) =
∑

pij=a,qij=c

a log
a

c
+

∑

pij=a,qij=d

a log
a

d
+

∑

pij=b,qij=c

b log
b

c
+

∑

pij=b,qij=d

b log
b

d

= CTPNTP + CMISSNMISS + CFPNFP + CTNNTN. (6)

HereNTP is the number of true positives, that is, points where the probability of being a neighbor
is high in both spaces. The number of misses, points not beingchosen for retrieval because of a
low probability in the output space although the probability in the input space is high, isNMISS.
The number of false positives isNFP; high in the output space but low in the input space. Finally
the number of true negatives (low in both spaces) isNTN. The C are the constant coefficients;
CTP = (1 − δ)/k log(r/k), and the rest analogously.

It is straightforward to check that ifδ is very small, then the coefficients for the misses and false
positives dominate the costESNE, and moreover

D(pi, qi) ≈ CMISSNMISS + CFPNFP =

NMISS

1 − δ

k

(

log
(N − r − 1)

k
+ log

(1 − δ)

δ

)

+NFP

δ

N − k − 1

(

log
r

N − k − 1
− log

(1 − δ)

δ

)

≈

(

NMISS

1 − δ

k
− NFP

δ

N − k − 1

)

log
(1 − δ)

δ

≈ NMISS

1 − δ

k
log

(1 − δ)

δ
=

NMISS

k
C, (7)

whereC is a constant. This is the cost function SNE would try to minimize, and hence it would
maximize recall which is defined as

recall=
NTP

k
= 1 −

NMISS

k
. (8)

In summary, with a step function as a neighborhood distribution, the SNE would optimize average
recall. This result is mainly theoretical, however, since optimization with such step functions would
be very difficult in practice. Instead, SNE uses a Gaussian neighborhood function which can be
interpreted as a smoothed step function. With the Gaussian the recall turns into a smoothed recall
which takes takes into account the sizes of the errors as wellas their number.

3 Neighbor Retrieval Visualizer

Understanding SNE in the information retrieval sense opensnew avenues for improving it. SNE
maximizes (smoothed) recall, and it is well known that maximizing recall typically leads to low
precision, and vice versa. In other words, SNE only optimizes one end of the spectrum.
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If we want to maximize precision, we can reverse the direction of the Kullback-Leibler divergence
in (3). For step functions and for smallδ, it is straightforward to show, analogously to the previous
section, that

D(qi|pi) ≈
NFP

r
C, (9)

whereNFP is the number of false positives andr is the number of retrieved points. Minimizing this
would correspond to maximizing precision defined as

precision= 1 −
NFP

r
. (10)

Hence, by reversing the direction of the Kullback-Leibler divergence in the cost function we get
a method that focuses on gaining a high precision. Again, we could switch to Gaussian neighbor
distributions instead of step functions, to get an algorithm that is analogous to SNE but that would
maximize smoothed precision instead of smoothed recall.

In practice it would be best to optimize a compromise. If we can assign a relative costλ to misses
and(1 − λ) to false positives, then the total cost function to be optimized should be

ENeRV = λEi[D(pi, qi)] + (1 − λ)Ei[D(qi, pi)]

= λ
∑

i

∑

j 6=i

pij log
pij

qij

+ (1 − λ)
∑

i

∑

j 6=i

qij log
qij

pij

. (11)

For step functions and smallδ this would reduce to the total information retrieval cost, and for
Gaussian functions as in SNE it can be interpreted as a smoothed cost. We call the new method that
optimizes (11)Neighbor Retrieval Visualizer (NeRV), since it interprets the visualization problem
as a problem of retrieving neighbors based on the visualization.

By setting the parameterλ ∈ [0, 1] we choose whether we want to focus more on the probabilities
that are high in the input space (recall) or in the output space (precision). Whenλ = 1 the method
becomes SNE and whenλ = 0 it focuses purely on avoiding false positives.

We optimize the cost function using a conjugate gradient method. A heuristic but very effective
way of avoiding local minima is to initialize the optimization by starting with a large width of the
Gaussian,σ2

i , and reducing it stepwise after each optimization step until the final value is reached.
After this initialization, normal conjugate gradients arerun with a fixed Gaussian.

4 Empirical Comparison

We compared the performance of NeRV to alternative methods on three data sets; the first is a small
artificial set and the two others very high-dimensional real-world sets.

Thick S-curve. The first data set is a simple toy set sampled from a folded low-dimensional man-
ifold, a two-dimensional S-shaped curve in a three-dimensional space. The 1000 data points were
constructed as follows. First, the data was uniformly sampled from a two-dimensional S-shaped
sheet. Then, to give the manifold a thickness, a spherical normally distributed displacement was
added to each point.

Mouse gene expression. The second data set is a collection of gene expression profiles from
different mouse tissues [11]. Expression of over 13,000 mouse genes had been measured in 45
tissues. We used an extremely simple filtering method, similar to that originally used in [11], to
select the genes for visualization. Of the mouse genes clearly (average difference in Affymetrix
chips, AD> 200) expressed in at least one of the 45 tissues (dimensions), a random sample of 1600
genes (points) was selected. After this the variance in eachtissue was normalized to unity.

Gene expression compendium. The third data set is a large collection of human
gene expression arrays [10]. (The normalized expression compendium is available from
http://dags.stanford.edu/cancer.) Since the current implementations of all methods
do not tolerate missing data we removed samples with missingvalues altogether. First we removed
genes that were missing from more than 300 arrays. Then we removed the arrays for which values
were still missing. This resulted in a data set containing 1278 points and 1339 dimensions.
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Methods. The performance of NeRV was compared with the following dimensionality reduction
methods: Principal Component Analysis (PCA) [6], metric MultiDimensional Scaling (MDS) [2],
Locally Linear Embedding (LLE) [9], Laplacian Eigenmap (LE) [1], Hessian Eigenmap (HLLE) [4],
Isomap [12], Alignment of Local Models (ALM) [13], Curvilinear Component Analysis (CCA) [3]
and Curvilinear Distance Analysis (CDA) [8], which is a variant of CCA that uses graph distances
to approximate the geodesic distances in the data.

Each method that has a parameterk for setting the number of nearest neighbors was tested with
values ofk ranging from 4 to 20, and the value producing the best resultswas selected. Methods
that may have local optima were run 10 times with different random initializations and the best
run was selected. For the NeRV algorithm we set the effectivenumber of neighbors to 20 (without
optimizing it further).

4.1 Results

We used three pairs of performance measures to compare the methods. The first one comes directly
from the NeRV cost function:Ei[D(pi, qi)] measures smoothed recall andEi[D(qi, pi)] smoothed
precision. We plot the results all methods on the plane spanned by the two measures. NeRV forms
a curve parametrized byλ (Fig. 1 top row). NeRV was clearly the best performing methodon all
three data sets, using this pair of measures.

Although the NeRV cost function is arguably a measure worth optimizing, we verified the results
with two other sets of performance measures. Since our motivation comes from information retrieval
we will plot standard precision–recall curves, as a function of the number of neighbors chosen from
the output space. Finally we will use a pair of measures that is analogous to our smoothed preci-
sion and recall, namely the trustworthiness and continuityused in [7]. Trustworthiness measures
how many of the neighbors defined in the output space are neighbors also in the input space, and
continuity the other way around. Errors are penalized according to the rank distance from the neigh-
borhood.

The precision–recall behavior of the methods is illustrated in the middle row of Figure 1. For
computational reasons the curves are obtained by varying the number of retrieved neighbors, without
re-computing the visualizations, although we know that forbest results the effective number of
neighbors in the width of the Gaussian smoother should matchthe number of retrieved neighbors.
Hence the results will not be optimal.

In the precision-retrieval curves, usually whenλ is small the precision becomes higher in the leftmost
end of the curve (where the number of retrieved neighbors is small) than with a largeλ. Analogously,
a largeλ seems to lead to better precision in the rightmost end. This is clear on the thick s-curve
data set as well as on the mouse gene expression data set. It isunclear why the best precision is
achieved withλ = 1 on the gene expression compendium. The CDA algorithm performed very well
in terms of precision, being the best on all three data sets, followed by CCA and NeRV. NeRV with
λ = 1 gained the best recall values on the two bioinformatics datasets but was superseded slightly
by PCA on the thick s-curve data set.

The results of the trustworthiness and continuity measures(Fig.1, bottom row) are very similar to the
ones from the Kullback-Leibler plots in the top row. One difference is that on the two bioinformatics
data sets the highest trustworthiness was gained with aλ value that was in the middle of the scale.
One explanation for this could be the differences in the definition of the neighborhood between
the trustworthiness measure and cost function of NeRV. The neighborhood in the trustworthiness
measure is defined as a step function instead of a smooth continuous function that covers all the
data, like in NeRV. Moreover, the trustworthiness measure does not care about what happens to the
points that are correctly inside the neighborhood. Thus NeRV uses resources in reducing errors that
the trustworthiness measure does not care about. This also explains why selectingλ = 0 or λ = 1
is not always the best choice to maximize trustworthiness orcontinuity, respectively.

5 Demonstrations

To illustrate how theλ affects the NeRV results in practice, we used a difficult demonstration data
set. The points are sampled uniformly from the surface of a three-dimensional sphere, and they are
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Figure 1: KL-KL curves (top), precision–recall curves (middle) and trustworthiness–continuity
curves (bottom) for different values ofλ on three data sets. Other nonlinear projection methods
have been added for reference. The precision–recall curveshave been calculated with 20 nearest
neighbors in the input space as the set of relevant items and the number of retrieved items (neigh-
bors) is varied from 1 to 100. Only the reference methods thatachieved the highest precision and the
highest recall are included for clarity. The KL–KL curve andthe trustworthiness-continuity curve
are calculated using 20 nearest neighbors. On each plot the best performance is in the top right cor-
ner. PCA: Principal Component Analysis, MDS: metric MultiDimensional Scaling, LLE: Locally
Linear Embedding, Eigenmap: Laplacian Eigenmap, CCA: Curvilinear Component Analysis, CDA:
CCA using geodesic distances, HLLE: Hessian Eigenmap, ALM:Alignment of Local Models.

to be projected to two dimensions. A perfect mapping is naturally impossible, and a compromise
is needed. Figure 2 illustrates that NeRV with small value ofλ cuts the sphere open to avoid false
positives, resembling a geographical projection, whereasfor largeλ the sphere is squashed flat to
minimize misses, resembling a linear projection. Note thatthe latter extreme corresponds to SNE,
whereas the former resembles the results of CCA and CDA.

As a more practical demonstration we visualized the documents from the NIPS 2001–2003 con-
ferences. The data vectors are histograms of log word countsin the documents, available from
http://ai.stanford.edu/∼gal/. Such a display, optimized to maximize performance in retrieval of sim-
ilar documents, could in practice be used by conference organizers to interactively define sessions
and to choose referees. In both tasks a lot of prior knowledgenaturally needs to be used, and the
visualization might help in grasping the big picture, compared to the alternative of using pure infor-
mation retrieval without such visualizations.

The four sub-images on the left side of Figure 3 show that the NIPS tracks are reasonably well
clustered on the display, providing evidence that the overall order is probably sensible. We finally
tested the system by mapping this paper to the display, shownon the right. The paper is in a very
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Figure 2: Two nonlinear projections of data that lies on the surface of a sphere to two dimensions.
One of the input coordinates governs the rotation of the glyphs, the second their scale, and the third
their degree of elongation. As a result, similarity of the glyphs indicates that the corresponding
points are close to each other in the input space. On theleft, λ = 0, the sphere has become split
open and the glyphs change smoothly, but on the opposite endsof the projection there are similar
glyphs that are projected far from each other. On theright λ = 1, the sphere has been squashed
flat. There are areas where the different kinds of glyphs are close to each other, but there are no
areas where similar glyphs are very far from each other. Onlya small portion of the points used for
computing the mapping are shown for clarity.

relevant area, containing many of the information visualization papers earlier presented in NIPS. It
lies some distance away from the mass, however. It remains tobe seen whether the distance is an
indication of a significant new result or of something else.

Global coordination of local linear models

Going metric: denoising pairwise data

Manifold parzen windows

SNE

Automatic alignement of local representations

Informed projections

Charting a manifold

Kernel dimensionality reduction for supervised learning

Out−of−Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and spectr. clust.

Non−linear CCA and PCA by Alignment of Local Models

NeRV

Figure 3: Documents from the NIPS 2001–2003 conferences projected onto a plane. On the left
side, documents from one of the NIPS tracks are highlighted by circles in each sub-image, and
the rest of the documents are marked by dots. Top left: Algorithms and architectures; Top right:
Control and reinforcement learning, Bottom left: Learningtheory; Bottom right: Neuroscience.
Right half: Enlarged view of the area marked by the rectangleon the left. This area contains most of
the documents related to dimensionality reduction, manifold learning or information visualization
(circles); titles of a few documents are shown. The five papers that were presented in the 2002
spotlight session on dimensionality reduction and manifold learning are marked with squares. The
current paper is in the top right corner; it has been marked with the label NeRV.
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6 Discussion

We have introduced a new rigorous principle for optimizing nonlinear projections. The visualiza-
tion task was conceptualized as neighbor retrieval, formulated as an information retrieval problem.
The cost function measures the total cost of misses and falsepositives. We introduced an algorithm
called NeRV (Neighbor Retrieval Visualizer) that extends the earlier Stochastic Neighbor Embed-
ding method.

NeRV outperformed alternatives clearly for all three data sets we tried, and for two cost functions.
By the third cost function NeRV was among the best but not a clear winner.

The weak point of NeRV is that it is computationally demanding. We have not analyzed the con-
vergence properties but each gradient step isO(N3) whereN is the number of data points, whereas
some of the alternatives are onlyO(N2). Moreover, the cost function has local minima, in contrast
to some alternatives which have a convex cost function.

In this paper we have assumed that the user chooses the compromise between precision and recall,
governed by the parameterλ. It would be nice to be able to optimize it, but the optimization would
increase the computational complexity. Choice of the valueof λ is not a critical step, however, since
NeRV outperforms the alternatives on a wide range of its values.

The visualizations could still be improved for interactiveuse with a simple additional visualization
method. Given that the user selects a point on a display, the false positives in its neighborhood, and
misses that are farther apart could be highlighted by special symbols.
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