
Helsinki University of Technology  
Publications in Computer and Information Science Report E3 

 April 2006 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

COMPACT MODELING OF DATA USING INDEPENDENT 
VARIABLE GROUP ANALYSIS 
          
 

Esa Alhoniemi     Antti Honkela     Krista Lagus     Jeremias Seppä 

Paul Wagner     Harri Valpola 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AB TEKNILLINEN KORKEAKOULU

TEKNISKA HÖGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY

TECHNISCHE UNIVERSITÄT HELSINKI

UNIVERSITE DE TECHNOLOGIE D’HELSINKI

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Distribution: 
Helsinki University of Technology 
Department of Computer Science and Engineering 
Laboratory of Computer and Information Science 
P.O. Box 5400 
FI-02015 TKK, Finland 
Tel.  +358-9-451 3267 
Fax  +358-9-451 3277 
 
 
This report is downloadable at 
http://www.cis.hut.fi/Publications/ 
 
 
 
ISBN  951-22-8166-X 
ISSN  1796-2803 
 
 
 
 
 

 



1

Compact Modeling of Data Using Independent
Variable Group Analysis

Esa Alhoniemi and Antti Honkela and Krista Lagus and Jeremias Seppä and Paul Wagner and Harri Valpola

Abstract— We introduce a principle called independent vari-
able group analysis (IVGA) which can be used for finding an
efficient structural representation for a given data set. The basic
idea is to determine such a grouping for the variables of the
data set that mutually dependent variables are grouped together
whereas mutually independent or weakly dependent variables
end up in separate groups.

Computation of any model that follows the IVGA principle
requires a combinatorial algorithm for grouping of the vari ables
and a modeling algorithm for the groups. In order to be able to
compare different groupings, a cost function which reflectsthe
quality of a grouping is also required. Such a cost function can
be derived for example using the variational Bayesian approach,
which is employed in our study. This approach is also shown tobe
approximately equivalent to minimizing the mutual information
between the groups.

The modeling task is computationally demanding. We describe
an efficient heuristic grouping algorithm for the variables and
derive a computationally light nonlinear mixture model for
modeling the dependencies within the groups. Finally, we carry
out a set of experiments which indicate that the IVGA principle
can be beneficial in many different applications.

Index Terms— compact modeling, independent variable group
analysis, mutual information, variable grouping, variational
Bayesian learning

I. I NTRODUCTION

The study of effective ways of finding compact repres-
entations from data is important for the automatic analysis
and exploration of complex data sets and natural phenomena.
Finding properties of the data that are not related can help in
discovering compact representations as it saves from having
to model the mutual interactions of unrelated properties.

It seems evident that humans group related properties as a
means for understanding complex phenomena. An expert of a
complicated industrial process such as a paper machine may
describe the relations between different control parameters
and measured variables by groups:A affectsB and C, and
so on. This grouping is of course not strictly valid as all
the variables eventually depend on each other, but it helps
in describing the most important relations, and thus makes
it possible for the human to understand the system. Such
groupings also significantly help the interaction with the
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process. Automatic discovery of such groupings would help
in designing visualizations and control interfaces that reduce
the cognitive load of the user by allowing her to concentrate
on the essential details.

Analyzing and modeling intricate and possibly nonlinear
dependencies between a very large number of real-valued vari-
ables (features) is a hard problem. Learning such models from
data generally requires very much computational power and
memory. If one does not limit the problem by assuming only
linear or other restricted dependencies between the variables,
essentially the only way to do this is to actually try to model
the data set using different model structures. One then needs a
principled way to score the structures, such as a cost function
that accounts for the model complexity as well as model
accuracy.

The remainder of the article is organized as follows. In
Section II we describe a computational principle called Inde-
pendent Variable Group Analysis (IVGA) by which one can
learn a structuring of the problem from data. In short, IVGA
does this by finding a partition of the set of input variables
that minimizes the mutual information between the groups,
or equivalently the cost of the overall model, including the
cost of the model structure and the representation accuracyof
the model. Its connections to related methods are discussedin
Section II-B.

The problem of modeling-based estimation of mutual in-
formation is discussed in Section III. The approximation
turns out to be equivalent to variational Bayesian learning.
Section III also describes one possible computational model
for representing a group of variables as well as the cost
function for that model. The algorithm that we use for finding
a good grouping is outlined in Section IV along with a number
of speedup techniques.

In Section V we examine how well the IVGA principle and
the current method for solving it work both on an artificial
toy problem and two real data sets of printed circuit board
assembly component database setting values and ionosphere
radar measurements.

Initially, the IVGA principle and an initial computational
method was introduced in [1], and some further experiments
were presented in [2]. In the current article we derive the con-
nection between mutual information and variational Bayesian
learning and describe the current, improved computational
method in more detail. The applied mixture model for mixed
real and nominal data is presented along with derivation of the
cost function. Details of the grouping algorithm and necessary
speedups are also presented. Completely new experiments
include an application of IVGA to supervised learning.
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Fig. 1. An illustration of the IVGA principle. The upper partof the figure
shows the actual dependencies between the observed variables. The arrows
that connect variables indicate causal dependencies. The lower part depicts
the variable groups that IVGA might find here. One actual dependency is left
unmodeled, namely the one between Z and E. Note that the IVGA does not
reveal causalities, but dependencies between the variables only.

II. I NDEPENDENTVARIABLE GROUP ANALYSIS (IVGA)
PRINCIPLE

The ultimate goal of Independent Variable Group Analysis
(IVGA) [1] is to partition a set of variables (also known
as attributes or features) into separate groups so that the
statistical dependencies of the variables within each group
are strong. These dependencies are modeled, whereas the
weaker dependencies between variables in different groupsare
disregarded. The IVGA principle is depicted in Fig. 1.

We wish to emphasize that IVGA should be seen as a
principle, not an algorithm. However, in order to determine
a grouping for observed data, a combinatorial grouping al-
gorithm for the variables is required. Usually this algorithm
is heuristic since exhaustive search over all possible variable
groupings is computationally infeasible.

The combinatorial optimization algorithm needs to be com-
plemented by a method to score different groupings or a cost
function for the groups. Suitable cost functions can be derived
in a number of ways, such as using the mutual information
between different groups or as the cost of an associated model
under a suitable framework such as minimum description
length (MDL) or variational Bayes. All of these alternatives
are actually approximately equivalent, as presented in Sec. III.

It should be noted that the models used in the model-based
approaches need not be of any particular type—as a matter
of fact, the models within a particular modeling problem do
not necessarily need to be of same type, that is, each variable
group could even be modeled using a different model type.

It is vital that the models for the groups are fast to
compute and that the grouping algorithm is efficient, too. In
Section IV-A, such a heuristic grouping algorithm is presented.
Each variable group is modeled by using a computationally
relatively light mixture model which is able to model nonlinear
dependencies between both nominal and real valued variables
at the same time. Variational Bayesian modeling is considered
in Section III, which also contains derivation of the mixture
model.

A. Motivation for Using IVGA

The computational usefulness of IVGA relies on the fact
that if two variables are dependent of each other, representing
them together is efficient, since redundant information needs
to be stored only once. Conversely, joint representation of
variables that do not depend on each other is inefficient.
Mathematically speaking, this means that the representation of
a joint probability distribution that can be factorized is more
compact than the representation a full joint distribution.In
terms of a problem expressed using association rules of the
form (A=0.3, B=0.9⇒ F=0.5, G=0.1): the shorter the rules
that represent the regularities within a phenomenon, the more
compact the representation is and the fewer association rules
are needed. IVGA can also be given a biologically inspired
motivation: With regard to the structure of the cortex, the
difference between a large monolithic model and a set of
models produced by the IVGA roughly corresponds to the
contrast between full connectivity (all cortical areas receive
inputs from all other areas) and more limited, structured
connectivity.

The IVGA principle has been shown to be sound: a very
simple initial method described in [1] found appropriate vari-
able groups from data where the features were various real-
valued properties of natural images. Recently, we have exten-
ded the model to handle also nominal (categorical) variables,
improved the variable grouping algorithm, and carried out
experiments on various different data sets.

The IVGA can be viewed in many different ways. First, it
can be seen as a method for finding compact representation
of data using multiple independent models. Secondly, IVGA
can be seen as a method of clustering variables. Note that it
is not equivalent to taking the transpose of the data matrix
and performing ordinary clustering, since dependent variables
need not be close to each other in the Euclidean or any
other common metric. Thirdly, IVGA can also be used as
a dimensionality reduction or feature selection method. The
review of related methods in Section II-B will concentrate
mainly on the first two of these topics.

B. Related Work

One of the basic goals of unsupervised learning is to
obtain compact representations for observed data. The methods
reviewed in this section are related to IVGA in the sense
that they aim at finding a compact representation for a data
set using multiple independent models. Such methods include
multidimensional independent component analysis (MICA,
also known as independent subspace analysis, ISA) [3] and
factorial vector quantization (FVQ) [4], [5].

In MICA, the goal is to find independent linear feature
subspaces that can be used to reconstruct the data efficiently.
Thus each subspace is able to model the linear dependencies in
terms of the latent directions defining the subspace. FVQ can
be seen as a nonlinear version of MICA, where the component
models are vector quantizers over all the variables. The main
difference between these and IVGA is that in IVGA, only
one model affects a given observed variable. In contrast in
the others, all models affect every observed variable. This
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Fig. 2. Schematic illustrations of IVGA and related algorithms, namely MICA/ISA and FVQ that each look for multi-dimensional feature subspaces in effect
by maximizing a statistical independence criterion. The input x is here 9-dimensional. The numbers of squares in FVQ and IVGAdenote the numbers of
variables modeled in each sub-model, and the numbers of black arrows in MICA the dimensionality of the subspaces. Note that with IVGA the arrows depict
all the required connections, whereas with FVQ and MICA onlya subset of the actual connections have been drawn (6 out of 27).

difference, visualized in Fig. 2, makes the computation of
IVGA significantly more efficient.

There are also a few other methods for grouping the vari-
ables based on different criteria. A graph-theoretic partitioning
of the graph induced by a thresholded association matrix
between variables was used for variable grouping in [6].
The method requires choosing an arbitrary threshold for the
associations, but the groupings could nevertheless be usedto
produce smaller decision trees with equal or better predictive
performance than using the full dataset.

A framework for grouping variables of a multivariate time
series based on possibly lagged correlations was presented
in [7]. The correlations are evaluated using Spearman’s rank
correlation that can find both linear and monotonic nonlinear
dependencies. The grouping method is based on a genetic
algorithm, although other possibilities are presented as well.
The method seems to be able to find reasonable groupings,
but it is restricted to time series data and certain types of
dependencies only.

Module networks [8] are a very specific class of models
that is based on grouping similar variables together. They
are used only for discrete data and all the variables in a
group are restricted to have exactly the same distribution.
The dependencies between different groups are modeled as
a Bayesian network. Sharing the same model within a group
makes the model easier to learn from scarce data, but severely
restricts its possible uses.

For certain applications, it may be beneficial to view IVGA
as a method for clustering variables. In this respect it is
related to methods such as double clustering, co-clustering
and biclustering which also form a clustering not only for the
samples, but for the variables, too [9], [10]. The differences
between these clustering methods are illustrated in Fig. 3.

III. A M ODELING-BASED APPROACH TOESTIMATING

MUTUAL INFORMATION

Estimating mutual information of high dimensional data
is very difficult as it requires an estimate of the probability
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Fig. 3. Schematic illustrations of the IVGA together with regular clustering
and biclustering. In biclustering, homogeneous regions ofthe data matrix are
sought for. The regions usually consist of a part of the variables and a part of
the samples only. In IVGA, the variables are clustered basedon their mutual
dependencies. If the individual groups are modeled using mixture models, a
secondary clustering of each group is also obtained, as marked by the dashed
lines in the rightmost subfigure.

density. We propose solving the problem by using a model-
based density estimate. With some additional approximations
the problem of minimizing the mutual information reduces toa
problem of maximizing the marginal likelihoodp(D|H) of the
model. Thus minimization of mutual information is equivalent
to finding the best model for the data. This model comparison
task can be performed efficiently using variational Bayesian
techniques.

A. Approximating the Mutual Information

Let us assume that the data setD consists of vectors
x(t), t = 1, . . . , T . The vectors areN -dimensional with the
individual components denoted byxj , j = 1, . . . , N . Our
aim is to find a partition of{1, . . . , N} to M disjoint sets
G = {Gi|i = 1, . . . , M} such that the mutual information

IG(x) =
∑

i

H({xj |j ∈ Gi})−H(x) (1)

between the sets is minimized. In caseM > 2, this is actually
a generalization of mutual information commonly known as
multi-information [11]. As the entropyH(x) is constant, this
can be achieved by minimizing the first sum. The entropies of
that sum can be approximated through

H(x) = −

∫

p(x) log p(x) dx ≈ −
1

T

T
∑

t=1

log p(x(t))

≈ −
1

T

T
∑

t=1

log p(x(t)|x(1), . . . , x(t− 1),H)

= −
1

T
log p(D|H).

(2)

Two approximations were made in this derivation. First, the
expectation over the data distribution was replaced by a
discrete sum using the data set as a sample of points from the
distribution. Next, the data distribution was replaced by the
posterior predictive distribution of the data sample giventhe
past observations. The sequential approximation is necessary
to avoid the bias caused by using the same data twice,
both for sampling and for fitting the model for the same
point. A somewhat similar approximation based on using the

probability density estimate implied by a model has been
applied for evaluating mutual information also in [12].

Using the result of Eq. (2), minimizing the criterion of
Eq. (1) is equivalent to maximizing

L =
∑

i

log p({Dj|j ∈ Gi}|Hi). (3)

This reduces the problem to a standard Bayesian model
selection problem. The two problems are, however, not ex-
actly equivalent. The mutual information cost (1) is always
minimized when all the variables are in a single group,
or multiple statistically independent groups. In case of the
Bayesian formulation (3), the global minimum may actually
be reached for a nontrivial grouping even if the variables are
not exactly independent. This allows determining a suitable
number of groups even in realistic situations when there are
weak residual dependencies between the groups.

B. Variational Bayesian Learning

Unfortunately evaluating the exact marginal likelihood is
intractable for most practical models as it requires evaluating
an integral over a potentially high dimensional space of allthe
model parametersθ. This can be avoided by using a variational
method to derive a lower bound of the marginal log-likelihood
using Jensen’s inequality

log p(D|H) = log

∫

θ

p(D, θ|H) dθ

= log

∫

θ

p(D, θ|H)

q(θ)
q(θ) dθ

≥

∫

θ

log
p(D, θ|H)

q(θ)
q(θ) dθ

(4)

whereq(θ) is an arbitrary distribution over the parameters. If
q(θ) is chosen to be of a suitable simple factorial form, the
bound can be rather easily evaluated exactly.

Closer inspection of the right hand side of Eq. (4) shows
that it is of the form

B =

∫

θ

log
p(D, θ|H)

q(θ)
q(θ) dθ

= log p(D|H)−DKL (q(θ)||p(θ|H,D)),

(5)

whereDKL (q||p) is the Kullback–Leibler divergence between
distributions q and p. The Kullback–Leibler divergence
DKL (q||p) is non-negative and zero only whenq = p. Thus it
is commonly used as a distance measure between probability
distributions although it is not a proper metric [13]. For a
more through introduction to variational methods, see for
example [14].

In addition to the interpretation as a lower bound of the
marginal log-likelihood, the quantity−B may also be in-
terpreted as a code length required for describing the data
using a suitable code [15]. The code lengths can then be used
to compare different models, as suggested by the minimum
description length (MDL) principle [16]. This provides an
alternative justification for the variational method. Addition-
ally, the alternative interpretation can provide more intuitive
explanations on why some models provide higher marginal
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Fig. 4. Our IVGA model as a graphical model. The nodes represent
variables of the model with the shaded ones being observed. The left-hand
side shows the overall structure of the model with independent groups. The
right-hand side shows a more detailed representation of themixture model of
a single group of three variables. Variablec indicates the generating mixture
component for each data point. The boxes in the detailed representation
indicate that there areT data points and in the rightmost model there are
C mixture components representing the data distribution. Rectangular and
circular nodes denote discrete and continuous variables, respectively.

likelihoods than others [17]. For the remainder of the paper,
the optimization criterion will be the cost function

C = −B =

∫

θ

log
q(θ)

p(D, θ|H)
q(θ) dθ

= DKL (q(θ)||p(θ|H,D))− log p(D|H)

(6)

that is to be minimized.

C. Mixture Model for the Groups

In order to apply the variational Bayesian method described
above to solve the IVGA problem, a class of models that
benefits from modeling independent variables independently
is needed for the groups. In this work mixture models have
been used for the purpose. Mixture models are a good choice
because they are simple while being able to model also
nonlinear dependencies. Our IVGA model is illustrated as a
graphical model in Fig. 4.

As shown in Fig. 4, different variables are assumed to be
independent within a mixture component and the dependencies
only arise from the mixture. For continuous variables, the
mixture components are Gaussian and the assumed independ-
ence implies a diagonal covariance matrix. Different mixture
components can still have different covariances [18]. The
applied mixture model closely resembles other well-known
models such as soft c-means clustering and soft vector quant-
ization [19].

For nominal variables, the mixture components are multino-
mial distributions. All parameters of the model have standard
conjugate priors. The exact definition of the model and the
approximation used for the variational Bayesian approach are
presented in Appendix I and the derivation of the cost function
in Appendix II.

IV. A VARIABLE GROUPING ALGORITHM FOR IVGA

The number of possible groupings ofn variables is called
the nth Bell numberBn. The values ofBn grow with n

faster than exponentially, making an exhaustive search of all
groupings infeasible. For example,B100 ≈ 4.8 · 10115. Hence,
some computationally feasible heuristic — which can naturally
be any standard combinatorial optimization algorithm — for
finding a good grouping has to be deployed.

In this section, we describe an adaptive heuristic grouping
algorithm for determination of the best grouping for the
variables which is currently used in our IVGA implementation.
After that, we also present three special techniques which are
used to speed up the computation.

A. The Algorithm

The goal of the algorithm is to find such a variable grouping
and such models for the groups that the total cost over all
the models is minimized. The algorithm has an initialization
phase and a main loop during which five different operations
are consecutively applied to the current models of the variable
groups and/or to the grouping until the end condition is met.
A flow-chart illustration of the algorithm is shown in Fig. 5
and the phases of the algorithm are explained in more detail
below.

Initialization. Each variable is assigned into a group of its
own and a model for each group is computed.

Main loop. The following five operations are consecutively
used to alter the current grouping and to improve the
models of the groups. Each operation of the algorithm is
assigned a probability which is adaptively tuned during
the main loop: If an operation is efficient in minimizing
the total cost of the model, its probability is increased
and vice versa.

Model recomputation. The purpose of this operation in
twofold. (1) It tries to find an appropriate complexity
for the model for a group of variables—which is
the number of mixture components in the mixture
model. (2) It tests different model initializations in
order to avoid local minima of the cost function of
the model. As the operation is performed multiple
times for a group, an appropriate complexity and good
initialization is found for the model of the group.
A mixture model for a group is recomputed so that the
number of mixture components may decrease, remain
the same, or increase. It is slightly more probable
that the number of components grows, that is, a more
complex model is computed. Next, the components
are initialized, for instance in the case of a Gaussian
mixture by randomly selecting the centroids among the
training data, and the model is roughly trained for some
iterations. If a model for the group had been computed
earlier, the new model is compared to the old model.
The model with the smaller cost is selected as the
current model for the group.

Model fine-tuning. When a good model for a group of
variables has been found, it is sensible to fine-tune it
further so that its cost approaches a local minimum of
the cost function. During training, the model cost is
never increased due to characteristics of the training
algorithm.
However, tuning a model of a group takes many
iterations of the learning algorithm and it is not sensible
to do that for all the models that are used.

Moving a variable. This operation improves an existing
grouping so that a single variable which is in a wrong
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Fig. 5. An illustration of the variable grouping algorithm for IVGA. The solid line describes control flow, the dashed lines denote low-level subroutines
and their calls so that the arrow points to the called routine. The dotted line indicates adaptation of the probabilitiesof the five operations. Function rand()
produces a random number on the interval [0,1].

group is moved to a more appropriate group. First, one
variable is randomly selected among all the variables
of all groups. The variable is removed from its original
group and moved to every other group (also to a group
of its own) at a time. For each new group candidate,
the cost of the model is roughly estimated. If the move
reduces the total cost compared to the original one, the
variable is moved to a group which yields the highest
decrease in the total cost.

Merge. The goal of the merge operation is to combine
two groups in which the variables are mutually depend-
ent. In the operation, two groups are selected randomly
among the current groups. A model for the variables
of their union is computed. If the cost of the model
of the joint group is smaller than the sum of the costs
of the two original groups, the two groups are merged.
Otherwise, the two original groups are retained.

Split. The split operation breaks down one or two exist-

ing groups. The group(s) are chosen so that two vari-
ables are randomly selected among all the variables.
The group(s) corresponding to the variables are then
taken for the operation. Hence, the probability of a
group to be selected is proportional to the size of the
group. As a result, more likely heterogeneous large
groups are chosen more frequently than smaller ones.
The operation recursively calls the algorithm for the
union of the selected groups. If the total cost of the
resulting models is less than the sum of the costs of
the original group(s), the original group(s) are replaced
by the new grouping. Otherwise, the original group(s)
are retained.

End condition. Iteration is stopped if the decrease of the total
cost is very small in several successive iterations.
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B. Speedup Techniques Used in Computation of the Models

Computation of an IVGA model for a large set of variables
requires computation of a huge number of models (say, thou-
sands), because in order to determine the cost of an arbitrary
variable group, a unique model for it needs to be computed (or,
at least, an approximation of the cost of the model). Therefore,
fast and efficient computation of models is crucial. We use the
following three special techniques are used in order to speed
up the computation of the models.

1) Adaptive Tuning of Operation Probabilities:During the
main loop algorithm described above, five operations are used
to improve the grouping and the models. Each operation
has a probability which dictates how often the corresponding
operation is performed (see Fig. 5). As the grouping algorithm
is run for many iterations, the probabilities are slowly adapted
instead of keeping them fixed because

• it is difficult to determine probabilities which are appro-
priate for an arbitrary data set; and

• during a run of the algorithm, the efficiency of different
operations varies—for example, the split operation is
seldom beneficial in the beginning of the iteration (when
the groups are small), but it becomes more useful when
the sizes of the groups tend to grow.

The adaptation is carried out by measuring the efficiency
(in terms of reduction of the total cost of all the mod-
els) of each operation. The probabilities of the operations
are gradually adapted so that the probability of an efficient
operation is increased and the probability of an inefficient
operation decreased. The adaptation is based on low-pass
filtered efficiency, which is defined by

efficiency = −
∆C

∆t
(7)

where∆C is the change in the total cost and∆t is the amount
of CPU time used for the operation.

Based on multiple tests (not shown here) using various
data sets, it has turned out that adaptation of the operation
probabilities instead of keeping them fixed significantly speeds
up the convergence of the algorithm into a final grouping.

2) “Compression” of the Models:Once a model for a
variable group is computed, it is sensible to be stored, because
it is a previously computed good model for a certain variable
group may be later needed.

Computation of many models—for example, a mixture
model—is stochastic, because often a model is initialized
randomly and trained for a number of iterations. However,
computation of such a model is actuallydeterministicprovided
that the state of the (deterministic) pseudorandom number
generator when the model was initialized is known. Thus, in
order to reconstruct a model after it has been once computed,
we need to store (i) the random seed, (ii) the number of
iterations that were used to train the model, and (iii) the model
structure. Additionally, it is also sensible to store (iv) the cost
of the model. So, a mixture model can be compressed into
two floating point numbers (the random seed and the cost of
the model) and two integers (the number of training iterations
and the number of mixture components).

Note that this model compression principle is completely
general: it can be applied in any algorithm in which compres-
sion of multiple models is required.

3) Fast Estimation of Model Costs When Moving a Vari-
able: When the move of a variable from one group to
all the other groups is attempted, computationally expensive
evaluation of the costs of multiple models is required. We use
a specialized speedup technique for fast approximation of the
costs of the groups: Before moving a variable to another group
for real, a quick pessimistic estimate of the total cost change
of the move is calculated, and only those new models that
look appealing are tested further.

When calculating the quick estimate for the cost change
if a variable is moved from one to another, the posterior
probabilities of the mixture components are fixed and only the
parameters of the components related to the moved variable are
changed. The cost of these two groups is then calculated for
comparison with their previous cost. The approximation can
be justified by the fact that if a variable is highly dependenton
the variables in a group, then the same mixture model should
fit it as well.

V. A PPLICATIONS, EXPERIMENTS

Problems in which IVGA can be found to be useful can be
divided into the following categories. First, IVGA can be used
for confirmatorypurposes in order to verify human intuition of
an existing grouping of variables. The first synthetic problem
presented in Section V-A can be seen as an example of this
type. Second, IVGA can be used toexplore observed data,
that is, to make hypotheses or learn the structure of the data.
The discovered structure can then be used to divide a complex
modeling problem into a set of simpler ones as illustrated in
Section V-B. Third, if we are dealing with a classification
problem, we can use IVGA to reveal the variables that are
dependent with the class variable. In other words, we can use
IVGA also for variable selectionor dimension reductionin
supervised learning problems. This is illustrated in Section V-
C.

A. Toy Example

In order to illustrate our IVGA algorithm using a simple and
easily understandable example, a data set consisting of one
thousand points in a four-dimensional space was synthesized.
The dimensions of the data are callededucation, income,
height, andweight. All the variables are real and the units
are arbitrary. The data was generated from a distribution in
which both education and income are statistically independent
of height and weight.

Fig. 6 shows plots of education versus income, height vs.
weight, and for comparison a plot of education vs. height.
One may observe, that in the subspaces of the first two plots
of Fig. 6, the data points lie in few, more concentrated clusters
and thus can generally be described (modeled) with a lower
cost in comparison to the third plot. As expected, when the
data was given to our IVGA model, the resulting grouping
was

{{education, income}, {height, weight}}.

Table I compares the costs of some possible groupings.
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Fig. 6. Comparison of different two-dimensional subspacesof the data. Due
to the dependencies between the variables shown in the first two pictures it is
useful to model those variables together. In contrast, in the last picture no such
dependency is observed and therefore no benefit is obtained from modeling
the variables together.

B. Printed Circuit Board Assembly

In the second experiment, we constructed predictive models
to support and speed up user input of component data of a
printed circuit board assembly robot. When a robot is used
in the assembly of a new product which contains components
that have not been previously used by the robot, the data of
the new components need to be manually determined and

Grouping Total Cost Parameters
{e,i,h,w} 12233.4 288
{e,i}{h,w} 12081.0 80
{e}{i}{h}{w} 12736.7 24
{e,h}{i}{w} 12739.9 24
{e,i}{h}{w} 12523.9 40
{e}{i}{h,w} 12304.0 56

TABLE I

A COMPARISON OF THE TOTAL COSTS OF SOME VARIABLE GROUPINGS OF

THE SYNTHETIC DATA. THE VARIABLES EDUCATION, INCOME, HEIGHT,

AND WEIGHT ARE DENOTED HERE BY THEIR INITIAL LETTERS. ALSO

SHOWN IS THE NUMBER OF REAL NUMBERS REQUIRED TO PARAMETERIZE

THE LEARNED OPTIMAL GAUSSIAN MIXTURE COMPONENT

DISTRIBUTIONS. THE TOTAL COSTS ARE FOR MIXTURE MODELS

OPTIMIZED CAREFULLY USING OURIVGA ALGORITHM . THE MODEL

SEARCH OF OURIVGA ALGORITHM WAS ABLE TO DISCOVER THE BEST

GROUPING, THAT IS, THE ONE WITH THE SMALLEST COST.

added to the existing component database of the robot by
a human operator. The component data can be seen as a
matrix. Each row of the matrix contains attribute values of one
component and the columns of the matrix depict component
attributes, which are not mutually independent. Building an
input support system by modeling of the dependencies of
the existing data using association rules has been considered
in [20]. A major problem of the approach is that extraction of
the rules is computationally heavy, and memory consumption
of the predictive model which contains the rules (in our case,
a trie) is very high.

We divided the component data of an operational assembly
robot (5 016 components, 22 nominal attributes) into a training
set (80 % of the whole data) and and a testing set (the rest 20
%). The IVGA algorithm was run 200 times for the training
set. In the first 100 runs (avg. cost 113 003), all the attributes
were always assigned into one group. During the last 100
runs (avg. cost 113 138) we disabled the adaptation of the
probabilities (see Section IV-A) to see if this would have an
effect on the resulting groupings. In these runs, we obtained
75 groupings with 1 group and 25 groupings with 2–4 groups.
Because we were looking for a good grouping with more than
one group, we chose a grouping with 2 groups (7 and 15
attributes). The cost of this grouping was 112 387 which was
not the best among all the results over 200 runs (111 791), but
not very far from it.

Next, the dependencies of (1) the whole data and (2)
the 2 variable groups were modeled using association rules.
The large sets required for computation of the rules were
computed using a freely available software implementation1

of the Eclat algorithm [21]. Computation of the rules requires
two parameters: minimum support (“generality” of the large
sets that the rules are based on) and minimum confidence
(“accuracy” of the rule). The minimum support dictates the
number of large sets, which is in our case equal to the size of
the model. For the whole data set, the minimum support was
5 %, which was the smallest computationally feasible value

1See http://www.adrem.ua.ac.be/∼goethals/software/
index.html
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in terms of memory consumption. For the models of the two
groups it set to 0.1 %, which was the smallest as possible value
so that the combined size of the two models did not exceed the
size of the model for the whole data. The minimum confidence
was set to 90 %, which is a typical value for the parameter in
many applications.

The rules were used for one-step prediction of the attribute
values of the testing data. The data consisted of values selected
and verified by human operators, but it is possible that these
are not the only valid values. Nevertheless, predictions were
ruled incorrect if they differed from these values. Computation
times, memory consumption, and prediction accuracy for the
whole data and the grouped data are shown in Table II.
Grouping of the data both accelerated computation of the
rules and improved the prediction accuracy. Also note that
the combined size of the models of the two groups is only
about 1/4 of the corresponding model for the whole data.

Whole Grouped
data data

Computation time (s) 48 9.1
Size of trie (nodes) 9 863 698 2 707 168
Correct predictions (%) 57.5 63.8
Incorrect predictions (%) 3.7 2.9
Missing predictions (%) 38.8 33.3

TABLE II

SUMMARY OF THE RESULTS OF THE COMPONENT DATA EXPERIMENT. ALL

THE QUANTITIES FOR THE GROUPED DATA ARE SUMS OVER THE TWO

GROUPS. ALSO NOTE THAT THE SIZE OF TRIE IS IN THIS PARTICULAR

APPLICATION THE SAME AS THE NUMBER OF ASSOCIATION RULES.

The potential benefits of the IVGA in an application of this
type are as follows. (1) It is possible to compute rules which
yield better prediction results, because the rules are based
on small amounts of data, i.e, it is possible to use smaller
minimum support for the grouped data. (2) Discretization of
continuous variables—which is often a problem in applica-
tions of association rules—is automatically carried out bythe
mixture model. (3) Computation of the association rules may
even be completely ignored by using the mixture models of
the groups as a basis for the predictions. Of these, (1) was
demonstrated in the experiment whereas (2) and (3) remain a
topic for future research.

C. Feature Selection for Supervised Learning: Ionosphere
Data

In this experiment, we investigated whether the variable
grouping ability could be used for feature selection for clas-
sification. One way to apply our IVGA model in this manner
is to see which variables IVGA groups together with the class
variable, and to use only these in the actual classifier.

We ran our IVGA algorithm 10 times for the the Ionosphere
data set [22], which contains 351 instances of radar measure-
ments consisting of 34 attributes and a binary class variable.
From the three groupings (runs) with the lowest cost, each
variable that was grouped with the class variable at least once
was included in the classification experiment. As a result, the
following three features were chosen:{1, 5, 7}.
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34 (all) variables
3 variables selected by IVGA

Fig. 7. Classification accuracies for the Ionosphere data using k-NN classifier
with all the variables (white markers) and with only the variables selected
using IVGA (black markers).

The classification was carried out using thek-nearest-
neighbor (k-NN) classifier. Out of the 351 samples 51 were
used for testing and the rest for training. In each experiment,
the testing and the training data sets were randomly drawn
from the entire data set and normalized prior to classification.
The averaged results of 1 000 different runs are shown in Fig.7
with various (odd) values fork. For comparison, the same
experiment was carried out using all the 34 variables. As can
be seen, the set of three features chosen using IVGA produces
clearly better classification accuracy than the complete set of
features wheneverk > 1. For example, fork = 5 the accuracy
using IVGA was 89.6 % while for the complete set of features
it was 84.8 %.

Extensive benchmarking experiments using the Ionosphere
data set that compare PCA and Random Projection for dimen-
sionality reduction with a number of classifiers are reported
in [23]. They also report accuracy in the original input space
for each method. For1-NN this value is 86.7 %, with5-
NN 84.5 %, and with a linear SVM classifier 87.8 %. The
best result obtained using dimension reduction was 88.7 %.
We used an identical test setting in our experiments with the
difference that feature selection was performed using IVGA.
Using thek-NN classifier we obtained better accuracies than
any of the classifiers used in [23], including linear SVM, when
they were performed in the original input space. Moreover,
IVGA was able to improve somewhat even upon the best
results that they obtained in the reduced-dimensional spaces.
We also tested nonlinear SVM using Gaussian kernel by using
the same software2 with default settings that was used in [23].
For the entire data set the prediction accuracy was weak, only
66.1 % whereas using the three variables selected by IVGA it
was the best among all the results in the experiment, 90.7 %.

A number of heuristic approaches to feature selection like
forward, backward, and floating search methods (see e.g. [25])
exist and could have been used here as well. However, the goal

2See [24] andhttp://svmlight.joachims.org/.
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of the experiment was not to find the best set of features but
to demonstrate that the IVGA can reveal useful structure of
the data.

VI. D ISCUSSION

Many real-world problems and data sets can be divided
into smaller relatively independent subproblems. Automatic
discovery of such divisions can significantly help in applying
different machine learning techniques to the data by reducing
computational and memory requirements of processing. The
IVGA principle calls for finding the divisions by partitioning
the observed variables into separate groups so that the mutual
dependencies between variables within a group are strong
whereas mutual dependencies between variables in different
groups are weaker.

In this paper, the IVGA principle has been implemented by
a method that groups the input variables only. In the end, there
may also exist interesting dependencies between the individual
variable groups. One avenue for future research is to extendthe
grouping model into a hierarchical IVGA that is able to model
the residual dependencies between the groups of variables.

From the perspective of using the method it would be useful
to implement many different model types including also linear
models. This would allow the modeling of each variable group
with the best model type for that particular sub-problem, and
depending on the types of dependencies within the problem.
Such extensions naturally require the derivation of a cost
function for each additional model family, but there are simple
tools for automating this process [26], [27].

The stochastic nature of the grouping algorithm makes its
computational complexity difficult to analyze. Empirically the
complexity of convergence to a neighborhood of a locally
optimal grouping seems to be roughly quadratic with respect
to both the number of variables and the number of data
samples. In case of number of samples this is because the
data does not exactly follow the mixture model and thus
more mixture components are used when there are more
samples. Convergence to the exact local optimum typically
takes significantly longer, but it is usually not necessary as
even nearly optimal results are often good enough in practice.

Although the presented IVGA model appears quite simple,
several computational speedup techniques are needed for itto
work efficiently enough. Some of these may be of interest in
themselves, irrespective of the IVGA principle. In particular
worth mentioning are the adaptive tuning of operation prob-
abilities in the grouping algorithm (Sec. IV-B.1) as well asthe
model compression principle (Sec. IV-B.2).

By providing the source code of the method for public use
we invite others both to use the method and to contribute to ex-
tending it. A MATLAB package of our IVGA implementation
is available athttp://www.cis.hut.fi/projects/
ivga/.

VII. C ONCLUSION

In this paper, we have presented the independent variable
group analysis (IVGA) principle and a method for modeling
data through mutually independent groups of variables. The

approach has been shown to be useful in real-world problems:
It decreases computational burden of other machine learning
methods and also increases their accuracy by letting them
concentrate on the essential dependencies of the data.

The general nature of the IVGA principle allows many
potential applications. The method can be viewed as a tool
for compact modeling of data, an algorithm for clustering
variables, or as a tool for dimensionality reduction and feature
selection. All these interpretations allow for several practical
applications.

Biclustering – clustering of both variables and samples – is
very popular in bioinformatics. In such applications it could
be useful to ease the strict grouping of the variables of IVGA.
This could be accomplished by allowing different partitions in
different parts of the data set using, for instance, a mixture-
of-IVGAs type of model. Hierarchical modeling of residual
dependencies between the groups would be another interesting
extension.

APPENDIX I
SPECIFICATION OF THEM IXTURE MODEL

A mixture model for the random variablex(t) can be
written with the help of an auxiliary variablec(t) denoting
the index of the active mixture component as illustrated in
the right part of Fig. 4. In our IVGA model, the mixture
model for the variable groups is chosen to be as simple as
possible for computational reasons. This is done by restricting
the componentsp(x(t)|θi,H) of the mixture to be such that
different variables are assumed independent. This yields

p(x(t)|H) =
∑

i

p(x(t)|θi,H)p(c(t) = i)

=
∑

i

p(c(t) = i)
∏

j

p(xj(t)|θi,j ,H),
(8)

whereθi,j are the parameters of theith mixture component
for the jth variable. Dependencies between the variables
are modeled only through the mixture. The variablec has
a multinomial distribution with parametersπc that have a
Dirichlet prior with parametersuc

p(c(t)|πc,H) = Multinom(c(t); πc) (9)

p(πc|uc,H) = Dirichlet(πc; uc). (10)

The use of a mixture model allows for both categorical
and continuous variables. For continuous variables the mixture
is a heteroscedastic Gaussian mixture, that is, all mixture
components have their own precisions. Thus

p(xj(t)|θi,j ,H) = N(xj(t); µi,j , ρi,j), (11)

where µi,j is the mean andρi,j is the precision of the
Gaussian. The parametersµi,j andρi,j have hierarchical priors

p(µi,j |µµj
, ρµj

,H) = N(µi,j ; µµj
, ρµj

) (12)

p(ρi,j |αρj
, βρj

,H) = Gamma(ρi,j ; αρj
, βρj

). (13)

For categorical variables, the mixture is a simple mixture
of multinomial distributions so that

p(xj(t)|θi,j ,H) = Multinom(xj(t); πi,j). (14)
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The probabilitiesπi,j have a Dirichlet prior

p(πi,j |uj ,H) = Dirichlet(πi,j ; uj). (15)

Combining these yields the joint probability of all paramet-
ers (herec = [c(1), . . . , c(T )]

T ):

p(D, c, πc, π, µ, ρ) =
∏

t

[

p(c(t)|πc)
]

p(πc|uc)

∏

i

[

∏

j:xj categorical

[

p(πi,j |uj)
]

∏

j:xj continuous

[

p(µi,j |µµj
, ρµj

)p(ρi,j |αρj
, βρj

)
]

]

∏

t

[

∏

j:xj categorical

p(xj(t)|c(t), π·,j)

∏

j:xj continuous

p(xj(t)|c(t), µ·,j , ρ·,j)

]

(16)

All the component distributions of this expression have been
introduced above in Eqs. (11)-(15).

The corresponding variational approximation is

q(c, πc, π, µ, ρ) = q(c)q(πc)q(π)q(µ)q(ρ) =
∏

t

[

q(c(t)|w(t))
]

q(πc|ûc)

∏

i

[

∏

j:xj categorical

[

q(πi,j |ûi,j)
]

∏

j:xj continuous

[

q(µi,j |µ̂µi,j
, ρ̂µi,j

)q(ρi,j |α̂ρi,j
, β̂ρi,j

)
]

]

(17)

with the factors

q(c(t)) = Multinom(c(t); w(t)) (18)

q(πc) = Dirichlet(πc; ûc) (19)

q(πi,j) = Dirichlet(πi,j ; ûi,j) (20)

q(µi,j) = N(µi,j ; µ̂µi,j
, µ̂ρi,j

) (21)

q(ρi,j) = Gamma(ρi,j ; α̂ρi,j
, β̂ρi,j

). (22)

Because of the conjugacy of the model, these are optimal
forms for the components of the approximation, given the
factorization. Specification of the approximation allows the
evaluation of the cost of Eq. (6) and the derivation of up-
date rules for the parameters as shown below in Appendix
II. The hyperparametersµµj

, ρµj
, αρj

, βρj
are updated using

maximum likelihood estimation. The parameters of the fixed
Dirichlet priors are set to values corresponding to the Jeffreys
prior.

APPENDIX II
DERIVATION OF THE COST FUNCTION AND UPDATE RULES

The cost function of Eq. (6) can be expressed, using〈·〉 to
denote expectation overq, as

〈

log
q(θ)

p(D, θ|H)

〉

=
〈

log q(θ)− log p(θ)
〉

−
〈

log p(D|θ)
〉

(23)

Now, being expected logarithms of products of probability
distributions over the factorial posterior approximationq, the
terms easily split further. The terms of cost function are
presented as the costs of the different parameters and the
likelihood term. Some of the notation used in the formulae
is introduced in Table III.

Symbol Explanation
C Number of mixture components
T Number of data points
Dcont Number of continuous dimensions
Sj The number of categories in nominal dimensionj
u0 The sum over the parameters of a Dirichlet distribution
Ik(x) An indicator forx being of categoryk
Γ The gamma function (not the distribution pdf)
Ψ The digamma function, that isΨ(x) = d

dx
ln(Γ(x))

wi(t) The multinomial probability/weight of theith mixture
component in thew(t) of data pointt

TABLE III

NOTATION

A. Terms of the Cost Function

〈

log q(c|w) − log p(c|πc)
〉

=
T
∑

t=1

C
∑

i=1

wi(t)
[

log wi(t)− [Ψ(ûci
)−Ψ(ûc0)]

]

(24)

〈

log q(πc|ûc)− log p(πc|uc)
〉

=
C
∑

i=1

[

(ûci
− uc)[Ψ(ûci

)−Ψ(ûc0)]− log Γ(ûci
)
]

+ log Γ(ûc0)− log Γ(uc0) + C log Γ(uc) (25)

〈

log q(π|û)− log p(π|u)
〉

=

∑

j:xj categorical

[

C
∑

i=1

Sj
∑

k=1

[

(ûi,j,k − uj,k)[Ψ(ûi,j,k)−Ψ(û0i,j
)]
]

+

C
∑

i=1

[

log Γ
(

û0i,j

)

−

Sj
∑

k=1

log Γ
(

ûi,j,k

)

]

+ C
[

− log Γ(u0j
) +

Sj
∑

k=1

log Γ(uj,k)
]

]

(26)



12

〈

log q(µ|µ̂µ, ρ̂µ)− log p(µ|µµ, ρµ)
〉

=

−
CDcont

2
+

∑

j:xj continuous

C
∑

i=1

[

log
ρ̂µi,j

2ρµj

+
ρµj

2

[

ρ̂−1
µi,j

+ (µ̂µi,j
− µµj

)2
]

]

(27)

〈

log q(ρ|α̂ρ, β̂ρ)− log p(ρ|αρ, βρ)
〉

=

∑

j:xj continuous

C
∑

i=1

[

log Γ(αρj
)− log Γ(α̂ρi,j

)

+ α̂ρi,j
log β̂ρi,j

− αρj
log βρj

+(α̂ρi,j
−αρj

)
(

Ψ(α̂ρi,j
)− log β̂ρi,j

)

+
α̂ρi,j

β̂ρi,j

(βρj
− β̂ρi,j

)
]

(28)

〈

− log p(D|c, πc, π, µ, ρ)
〉

=
T log(2π)Dcont

2

+

T
∑

t=1

C
∑

i=1

{

wi(t)

[

−
∑

j:xj categorical

[

Ψ(ûi,j,xj(t))−Ψ(û0i,j
)
]

+
1

2

∑

j:xj continuous

[ α̂ρi,j

β̂ρi,j

(

ρ̂−1
µi,j

+ (xj(t)− µ̂µi,j
)2
)

−
(

Ψ(α̂ρi,j
)− log β̂ρi,j

)

]

]}

(29)

B. On the Iteration Formulae and Initialization

The iteration formulae for one full iteration of mix-
ture model adaptation consist of simple coordinate-wise
re-estimations of the parameters. This is like expectation-
maximization (EM) iteration. The update rules of the hyper-
parametersµµj

, ρµj
, αρj

and βρj
are based on maximum

likelihood estimation.

Before the iteration the mixture components are initialized
using the dataset and a pseudorandom seed number that is used
to make the initialization stochastic but reproducible using the
same random seed. The mixture components are initialized as
equiprobable.

C. The Iteration Formulae

One full iteration cycle:

1) Updatew

w∗
i (t)← exp

(

Ψ(ûci
)+

∑

j:xj categorical

[

Ψ(ûi,j,xj(t))−Ψ(û0i,j
)
]

−
1

2

∑

j:xj continuous

[

α̂ρi,j

β̂ρi,j

(

ρ̂−1
µi,j

+ (xj(t)− µ̂µi,j
)2
)

−
(

Ψ(α̂ρi,j
)− log β̂ρi,j

)

]

)

wi(t)←
w∗

i (t)
∑C

i′=1 w∗
i′ (t)

(30)

2) Updateûc

ûci
← uc +

T
∑

t=1

wi(t) (31)

3) Update categorical dimensions of the mixture compon-
ents

ûi,j,k ← uj,k +

T
∑

t=1

wi(t)Ik(xj(t)) (32)

4) Update continuous dimensions of the mixture compon-
ents

µ̂µi,j
←

ρµj
µµj

+
α̂ρi,j

β̂ρi,j

∑T
t=1 wi(t)xj(t)

ρµj
+

α̂ρi,j

β̂ρi,j

∑T
t=1 wi(t)

(33)

ρ̂µi,j
← ρµj

+
α̂ρi,j

β̂ρi,j

T
∑

t=1

wi(t) (34)

α̂ρi,j
← αρj

+
1

2

T
∑

t=1

wi(t) (35)

β̂ρi,j
← βρj

+
1

2

T
∑

t=1

wi(t)
[

ρ̂−1
µi,j

+ (µ̂µi,j
− xj(t))

2
]

(36)
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