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Compact Modeling of

Data Using Independent

Variable Group Analysis

Esa Alhoniemi and Antti Honkela and Krista Lagus and Jersrsieppa and Paul Wagner and Harri Valpola

Abstract— We introduce a principle called independent vari-
able group analysis (IVGA) which can be used for finding an
efficient structural representation for a given data set. Tle basic
idea is to determine such a grouping for the variables of the
data set that mutually dependent variables are grouped togher
whereas mutually independent or weakly dependent variable
end up in separate groups.

Computation of any model that follows the IVGA principle
requires a combinatorial algorithm for grouping of the vari ables
and a modeling algorithm for the groups. In order to be able to
compare different groupings, a cost function which reflectsthe
quality of a grouping is also required. Such a cost function an
be derived for example using the variational Bayesian apprach,
which is employed in our study. This approach is also shown tbe
approximately equivalent to minimizing the mutual information
between the groups.

The modeling task is computationally demanding. We describ
an efficient heuristic grouping algorithm for the variables and
derive a computationally light nonlinear mixture model for
modeling the dependencies within the groups. Finally, we cgy
out a set of experiments which indicate that the IVGA principle
can be beneficial in many different applications.

Index Terms— compact modeling, independent variable group
analysis, mutual information, variable grouping, variational
Bayesian learning

I. INTRODUCTION

The study of effective ways of finding compact repre

process. Automatic discovery of such groupings would help
in designing visualizations and control interfaces thatume
the cognitive load of the user by allowing her to concentrate
on the essential details.

Analyzing and modeling intricate and possibly nonlinear
dependencies between a very large number of real-valuéd var
ables (features) is a hard problem. Learning such modats fro
data generally requires very much computational power and
memory. If one does not limit the problem by assuming only
linear or other restricted dependencies between the Vasiab
essentially the only way to do this is to actually try to model
the data set using different model structures. One thensneed
principled way to score the structures, such as a cost fumcti
that accounts for the model complexity as well as model
accuracy.

The remainder of the article is organized as follows. In
Section Il we describe a computational principle calledeind
pendent Variable Group Analysis (IVGA) by which one can
learn a structuring of the problem from data. In short, IVGA
does this by finding a partition of the set of input variables
that minimizes the mutual information between the groups,
or equivalently the cost of the overall model, including the
cost of the model structure and the representation accuafacy
the model. Its connections to related methods are discussed
gection I1-B.

entations from data is important for the automatic analysjs 1€ Problem of modeling-based estimation of mutual in-
and exploration of complex data sets and natural phenomefimation is discussed in Section Ill. The approximation
Finding properties of the data that are not related can melp{{rns out to be equivalent to variational Bayesian learning
discovering compact representations as it saves from gav§ect|0n Il also describes one possible computational mode

to model the mutual interactions of unrelated properties.

It seems evident that humans group related properties aly

for representing a group of variables as well as the cost
gction for that model. The algorithm that we use for finding

means for understanding complex phenomena. An expert oft §00d grouping is outlined in Section IV along with a number

complicated industrial process such as a paper machine ik,
describe the relations between different control pararaete

and measured variables by groups:affects B and C, and

so on. This grouping is of course not strictly valid as afioy

peedup techniques.

n Section V we examine how well the IVGA principle and
the current method for solving it work both on an artificial
problem and two real data sets of printed circuit board

the variables eventually depend on each other, but it hef@eSembly component database setting values and ionosphere

in describing the most important relations, and thus makEd

ar measurements.

it possible for the human to understand the system. SucHnitially, the IVGA principle and an initial computational

groupings also significantly help the interaction with th
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ghethod was introduced in [1], and some further experiments
were presented in [2]. In the current article we derive the-co
nection between mutual information and variational Bagesi
learning and describe the current, improved computational
method in more detail. The applied mixture model for mixed
real and nominal data is presented along with derivatiohef t
cost function. Details of the grouping algorithm and neagss
speedups are also presented. Completely new experiments
include an application of IVGA to supervised learning.



Dependencies in the data:

A. Motivation for Using IVGA

X Y - 2 The computational usefulness of IVGA relies on the fact
/ l \ /\ / \\‘ that if two variables are dependent of each other, repriegent
# them together is efficient, since redundant informationdsee
A B c D E F G H to be stored only once. Conversely, joint representation of
variables that do not depend on each other is inefficient.
IVGA identifies: Mathematically speaking, this means that the representafi
o a joint probability distribution that can be factorized i®ra
Group 1 . - ~< Group 2, - ~ Group 3_---~_ . .. L K
ox J/ . N compact than the representation a full Jom_t c_i|str|but|d1m.
' / N ! /Y\ : / AR Y terms of a problem expressed using association rules of the
X A\%C ) i D—E" { F\Af/"' ! form (A=0.3, B=0.9= F=0.5, G=0.1): the shorter the rules
B/ \ )/ \\\ G that represent the regularities within a phenomenon, theemo
e Tt ol compact the representation is and the fewer associati@s rul

, _ , . _ are needed. IVGA can also be given a biologically inspired
Fig. 1. An illustration of the IVGA principle. The upper past the figure tivation: With d to th truct f th t th
shows the actual dependencies between the observed earidiile arrows m_o ivation: With regard to the s rl'_'C _ure 0 € cortex, the
that connect variables indicate causal dependencies. diter Ipart depicts difference between a large monolithic model and a set of
the variable groups that IVGA might find here. One actual delpacy is left models produced by the IVGA roughly corresponds to the
unmodeled, namely the one between Z and E. Note that the V&5 dot .. . .
reveal causalities, but dependencies between the vasiably. contrast between full connectivity (all cortical areaseiee

inputs from all other areas) and more limited, structured

connectivity.
Il. | NDEPENDENTVARIABLE GROUPANALYSIS (IVGA) The IVGA principle has been shown to be sound: a very
PRINCIPLE simple initial method described in [1] found appropriateiva

able groups from data where the features were various real-

Falued properties of natural images. Recently, we havenexte
ed the model to handle also nominal (categorical) vargble

%roved the variable grouping algorithm, and carried out
eriments on various different data sets.

e IVGA can be viewed in many different ways. First, it
can be seen as a method for finding compact representation
of data using multiple independent models. Secondly, IVGA
¢An be seen as a method of clustering variables. Note that it

not equivalent to taking the transpose of the data matrix

nd performing ordinary clustering, since dependent béef

. o . g . need not be close to each other in the Euclidean or any
IS heu_rlst|c_ since exha_ustlve _search over all possibleagi other common metric. Thirdly, IVGA can also be used as
groupings is computationally infeasible. a dimensionality reduction or feature selection methode Th

The combinatorial optimization al_gorlthm need_s to be COMaview of related methods in Section 11-B will concentrate
plemented by a method to score different groupings or a C(?ﬁ:t;linly on the first two of these topics
function for the groups. Suitable cost functions can beveeri

in a number of ways, such as using the mutual information

between different groups or as the cost of an associatedimdge Related Work

under a suitable framework such as minimum descriptionOne of the basic goals of unsupervised learning is to
length (MDL) or variational Bayes. All of these alternasve obtain compact representations for observed data. Theoateth
are actually approximately equivalent, as presented inl8ec reviewed in this section are related to IVGA in the sense

It should be noted that the models used in the model-bagkdt they aim at finding a compact representation for a data
approaches need not be of any particular type—as a mattet using multiple independent models. Such methods ieclud
of fact, the models within a particular modeling problem dmultidimensional independent component analysis (MICA,
not necessarily need to be of same type, that is, each variadlso known as independent subspace analysis, ISA) [3] and
group could even be modeled using a different model typefactorial vector quantization (FVQ) [4], [5].

It is vital that the models for the groups are fast to In MICA, the goal is to find independent linear feature
compute and that the grouping algorithm is efficient, too. lsubspaces that can be used to reconstruct the data efficient!
Section IV-A, such a heuristic grouping algorithm is preaeen Thus each subspace is able to model the linear dependemcies i
Each variable group is modeled by using a computationatigrms of the latent directions defining the subspace. FVQ can
relatively light mixture model which is able to model nordar be seen as a nonlinear version of MICA, where the component
dependencies between both nominal and real valued vasiabteodels are vector quantizers over all the variables. The mai
at the same time. Variational Bayesian modeling is consitlerdifference between these and IVGA is that in IVGA, only
in Section 1ll, which also contains derivation of the mi@ur one model affects a given observed variable. In contrast in
model. the others, all models affect every observed variable. This

The ultimate goal of Independent Variable Group Analys
(IVGA) [1] is to partition a set of variables (also known
as attributes or features) into separate groups so that
statistical dependencies of the variables within each wroy
are strong. These dependencies are modeled, whereas t
weaker dependencies between variables in different grargs
disregarded. The IVGA principle is depicted in Fig. 1.

We wish to emphasize that IVGA should be seen as
principle, not an algorithm. However, in order to determin
a grouping for observed data, a combinatorial grouping
gorithm for the variables is required. Usually this algtomit



MICA / ISA FVQ
Cagios(/) (?998) Hinton & Zemel (1994)

———

Subspace of

the original @\ VQ for all

space (linear) the variables
(nonlinear)

IVGA

Any method for modeling
dependencies within
a variable group

Fig. 2. Schematic illustrations of IVGA and related algamits, namely MICA/ISA and FVQ that each look for multi-dimeamsl feature subspaces in effect
by maximizing a statistical independence criterion. Theuinx is here 9-dimensional. The numbers of squares in FVQ and I\d8Aote the numbers of
variables modeled in each sub-model, and the numbers df blaows in MICA the dimensionality of the subspaces. Not thith IVGA the arrows depict
all the required connections, whereas with FVQ and MICA amlgubset of the actual connections have been drawn (6 out)of 27

difference, visualized in Fig. 2, makes the computation of Module networks [8] are a very specific class of models
IVGA significantly more efficient. that is based on grouping similar variables together. They

There are also a few other methods for grouping the vafte used only for discrete data and all the variables in a
ables based on different criteria. A graph-theoretic paring group are restricted to have exactly the same distribution.
of the graph induced by a thresholded association matfke dependencies between different groups are modeled as
between variables was used for variable grouping in [63. Bayesian network. Sharing the same model within a group
The method requires choosing an arbitrary threshold for theakes the model easier to learn from scarce data, but sgverel
associations, but the groupings could nevertheless be tosedestricts its possible uses.

produce smaller decision trees with equal or better priedict For certain applications, it may be beneficial to view IVGA
performance than using the full dataset. as a method for clustering variables. In this respect it is

A framework for grouping variables of a multivariate timd€!ated to methods such as double clustering, co-clugterin
series based on possibly lagged correlations was preseri8d Piclustering which also form a clustering not only foe th
in [7]. The correlations are evaluated using Spearman’k rap@MPles, but for the variables, too [9], [10]. The differesic
correlation that can find both linear and monotonic nonline§etween these clustering methods are illustrated in Fig. 3.
dependencies. The grouping method is based on a genetic
algorithm, although other possibilities are presented a.w !l A M ODELING-BASED APPROACH TOESTIMATING
The method seems to be able to find reasonable groupings, MUTUAL INFORMATION
but it is restricted to time series data and certain types ofEstimating mutual information of high dimensional data
dependencies only. is very difficult as it requires an estimate of the probailit



Variables Variables Variables probability density estimate implied by a model has been

L applied for evaluating mutual information also in [12].
3 8 8 -1 Using the result of Eg. (2), minimizing the criterion of
g‘ g [] g Lo Eq. (1) is equivalent to maximizing
5 5| &k .
] L= logp({Dylj € G:}|H,). 3)
Clustering Biclustering IVGA This reduces the problem to a standard Bayesian model

selection problem. The two problems are, however, not ex-
Fig. 3. Schematic illustrations of the IVGA together witlguéar clustering actly equivalent. The mutual information cost (1) is always
and biclustering. In_biclustering, homogeneous regiontheft_:iata matrix are minimized when all the variables are in a single group,
sought for. The regions usually consist of a part of the Wemand a part of . .. .
the samples only. In IVGA, the variables are clustered basetheir mutual OF mu!tlple Stat|5t|_ca||y independent groups. In case & th
dependencies. If the individual groups are modeled usingum models, a Bayesian formulation (3), the global minimum may actually
secondary clustering of each group is also obtained, asetdk the dashed be reached for a nontrivial grouping even if the variables ar
lines in the rightmost subfigure. . . e .

not exactly independent. This allows determining a suéabl

number of groups even in realistic situations when there are

density. We propose solving the problem by using a modé(\’—eak residual dependencies between the groups.

based density estimate. With some additional approximatio

the problem of minimizing the mutual information reduceato B. Variational Bayesian Learning

problem of maximizing the marginal likelihogaD|H) of the  ynfortunately evaluating the exact marginal likelihood is

model. Thus minimization of mutual information is equivaie ntractable for most practical models as it requires evaiga

to finding the best model for the data. This model comparisgp, integral over a potentially high dimensional space oftll

task can be performed efficiently using variational Bayesig,odel parameter. This can be avoided by using a variational

techniques. method to derive a lower bound of the marginal log-likelidoo
using Jensen’s inequality

A A imating the Mutual Informati
pproximating the Mutual Information log p(D|H) = 1Og/p(D,0|H) do
2]

Let us assume that the data sPBt consists of vectors

x(t),t = 1,...,T. The vectors areV-dimensional with the 1o /P(D,9|H) ) do @)
individual components denoted hy;,j; = 1,...,N. Our o q(0)
aim is to find a partition of{1,..., N} to M disjoint sets p(D, 0|H)
G ={Gili=1,..., M} such that the mutual information z /91 q(6) (0) do
Ig(x) = ZH({IJ'U €G}) - H(x) (1) Whereg(0) is an arbitrary distribution over the parameters. If
; q(0) is chosen to be of a suitable simple factorial form, the

bound can be rather easily evaluated exactly.
Closer inspection of the right hand side of Eq. (4) shows
%hat it is of the form

between the sets is minimized. In cake> 2, this is actually

a generalization of mutual information commonly known

multi-information [11]. As the entropyd (x) is constant, this

can be achieved by minimizing the first sum. The entropies of B— /1Og p(D, 0|H)q(0) d0
0

that sum can be approximated through q(8) (5)
L = logp(D|H) — Dk (¢(8)|[p(6|H, D)),
H(z) = - /p(:v) log p(z) do ~ —7 Zlogp(x(t)) where Dy, (q||p) is the Kullback—Leibler divergence between
t=1 distributions ¢ and p. The Kullback-Leibler divergence

1 & Dk (¢]|p) is non-negative and zero only when= p. Thus it
~7 > logp(a(t)|z(1), ... x(t — 1), H) @) is commonly used as a distance measure between probability
t=1 distributions although it is not a proper metric [13]. For a
= —llogp('D|H). more through introduction to variational methods, see for
T example [14].
Two approximations were made in this derivation. First, the In addition to the interpretation as a lower bound of the
expectation over the data distribution was replaced by naarginal log-likelihood, the quantity-5 may also be in-
discrete sum using the data set as a sample of points from thoreted as a code length required for describing the data
distribution. Next, the data distribution was replaced bg t using a suitable code [15]. The code lengths can then be used
posterior predictive distribution of the data sample gitke to compare different models, as suggested by the minimum
past observations. The sequential approximation is napesdescription length (MDL) principle [16]. This provides an
to avoid the bias caused by using the same data twiedternative justification for the variational method. Atiloin-
both for sampling and for fitting the model for the samally, the alternative interpretation can provide more itintg
point. A somewhat similar approximation based on using tlexplanations on why some models provide higher marginal

Q



@ In this section, we describe an adaptive heuristic grouping

‘ algorithm for determination of the best grouping for the
variables which is currently used in our IVGA implementatio
After that, we also present three special techniques whieh a
used to speed up the computation.

@(xéé@@ LA
X | X3 ! |1 1
| BEGE ©

A. The Algorithm

Fig. 4. Our IVGA model as a graphical model. The nodes repiese ; ; : ; ;

variables of the model with the shaded ones being observee.l&ft-hand The goal of the algomhm is to find such a variable grouping

side shows the overall structure of the model with indepengeoups. The and such models for the groups that the total cost over all

right-hand side shows a more detailed representation aiikure model of  the models is minimized. The algorithm has an initializatio

a single group of three variables. Variakléndicates the generating mixture phase and a main |00p during which five different operations

component for each data point. The boxes in the detailedeseptation . . .

indicate that there ar@ data points and in the rightmost model there aré@f€ consecutively applied to the current models of the biia

C mixture components representing the data distributiorcté®gular and groups and/or to the grouping until the end condition is met.

circular nodes denote discrete and continuous variabdsgpectively. A flow-chart illustration of the algorithm is shown in Fig. 5
and the phases of the algorithm are explained in more detail

likelihoods than others [17]. For the remainder of the papebrelow'

the optimization criterion will be the cost function Initialization. Each variable is assigned into a group of its
®) own and a model for each group is computed.
q

C=—-B= /10g7q(0) do Main loop. The following five operations are consecutively
o p(D,0H) (6) used to alter the current grouping and to improve the
= Dk (q(0)||p(0|H, D)) — log p(D|H) models of the groups. Each operation of the algorithm is
that is to be minimized. assigned a probability which is adaptively tuned during
the main loop: If an operation is efficient in minimizing
the total cost of the model, its probability is increased
and vice versa.

In order to apply the variational Bayesian method described  \104el recomputation. The purpose of this operation in
above to solve the IVGA problem, a class of models that twofold. (1) It tries to find an appropriate complexity

benefits from modeling independent variables indepengentl for the model for a group of variables—which is
is needed for the groups. In this work mixture models have the number of mixture components in the mixture
been used for the purpose. Mixture models are a good choice  ,5del. (2) It tests different model initializations in

because they are simple while being able to model also  qrqger 1o avoid local minima of the cost function of
nonlinear dependencies. Our IVGA model is illustrated as a the model. As the operation is performed multiple

C. Mixture Model for the Groups

graphical model in Fig. 4.

As shown in Fig. 4, different variables are assumed to be
independent within a mixture component and the dependencie
only arise from the mixture. For continuous variables, the

mixture components are Gaussian and the assumed independ-

ence implies a diagonal covariance matrix. Different migtu
components can still have different covariances [18]. The
applied mixture model closely resembles other well-known
models such as soft c-means clustering and soft vector quant
ization [19].

For nominal variables, the mixture components are multino-
mial distributions. All parameters of the model have stadda
conjugate priors. The exact definition of the model and the
approximation used for the variational Bayesian approaeh a
presented in Appendix | and the derivation of the cost fuomcti
in Appendix 1.

IV. A VARIABLE GROUPINGALGORITHM FORIVGA

The number of possible groupings ofvariables is called
the nth Bell number B,,. The values ofB, grow with n
faster than exponentially, making an exhaustive searcHl of a
groupings infeasible. For examplByoy ~ 4.8 -10'15. Hence,
some computationally feasible heuristic — which can nalyira
be any standard combinatorial optimization algorithm — for
finding a good grouping has to be deployed.

times for a group, an appropriate complexity and good

initialization is found for the model of the group.

A mixture model for a group is recomputed so that the

number of mixture components may decrease, remain
the same, or increase. It is slightly more probable

that the number of components grows, that is, a more
complex model is computed. Next, the components
are initialized, for instance in the case of a Gaussian
mixture by randomly selecting the centroids among the
training data, and the model is roughly trained for some
iterations. If a model for the group had been computed
earlier, the new model is compared to the old model.

The model with the smaller cost is selected as the
current model for the group.

Model fine-tuning. When a good model for a group of

variables has been found, it is sensible to fine-tune it
further so that its cost approaches a local minimum of
the cost function. During training, the model cost is

never increased due to characteristics of the training
algorithm.

However, tuning a model of a group takes many
iterations of the learning algorithm and it is not sensible
to do that for all the models that are used.

Moving a variable. This operation improves an existing

grouping so that a single variable which is in a wrong



Fig. 5.
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Randomly choose two variables
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! Initialize and:
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1
|
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|
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'”’ ' Recompute!
Merge -~ model |

Split s

cost i

Compute
efficiency of
each operatig
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An illustration of the variable grouping algorithmorflVGA. The solid line describes control flow, the dashededirdenote low-level subroutines
and their calls so that the arrow points to the called routiffee dotted line indicates adaptation of the probabilinéghe five operations. Function rand()
produces a random number on the interval [0,1].

group is moved to a more appropriate group. First, one
variable is randomly selected among all the variables
of all groups. The variable is removed from its original
group and moved to every other group (also to a group
of its own) at a time. For each new group candidate,
the cost of the model is roughly estimated. If the move
reduces the total cost compared to the original one, the
variable is moved to a group which yields the highest
decrease in the total cost.

Merge. The goal of the merge operation is to combine

two groups in which the variables are mutually depend-
ent. In the operation, two groups are selected randomly
among the current groups. A model for the variables

ing groups. The group(s) are chosen so that two vari-
ables are randomly selected among all the variables.
The group(s) corresponding to the variables are then
taken for the operation. Hence, the probability of a
group to be selected is proportional to the size of the
group. As a result, more likely heterogeneous large
groups are chosen more frequently than smaller ones.
The operation recursively calls the algorithm for the
union of the selected groups. If the total cost of the
resulting models is less than the sum of the costs of
the original group(s), the original group(s) are replaced
by the new grouping. Otherwise, the original group(s)
are retained.

of their union is computed. If the cost of the modeEnd condition. Iteration is stopped if the decrease of the total

of the joint group is smaller than the sum of the costs
of the two original groups, the two groups are merged.
Otherwise, the two original groups are retained.

Split. The split operation breaks down one or two exist-

cost is very small in several successive iterations.



B. Speedup Techniques Used in Computation of the Models Note that this model compression principle is completely

Computation of an IVGA model for a large set of variablegeneral: it can be applied in any algorithm in which compres-
: ; i f multiple models is required.
requires computation of a huge number of models (say, thotioh © o . -
sands), because in order to determine the cost of an axbitra 3) Fast Estimation of Mode| Costs When Moving a Vari

. . : Ble: When the move of a variable from one group to
variable group, a unique model for it needs to be computed (a[l the other groups is attempted, computationally expensi
at least, an approximation of the cost of the model). Theegfo '

- . . . evaluation of the costs of multiple models is required. We us
fast and efficient computation of models is crucial. We uge th o ) L
specialized speedup technique for fast approximatiohef t

following three spemal techniques are used in order to d;pe%osts of the groups: Before moving a variable to anothergrou
up the computation of the models.

1) Adaptive Tuning of Operation Probabilitie®uring the for real, a quick pessimistic estimate of the total cost ¢gean

. . . ) : of the move is calculated, and only those new models that
main loop algorithm described above, five operations ard USE K appealing are tested further

to improve th? grogping and the models. Each operat?onWhen calculating the quick estimate for the cost change
has a probability which dictates how often the correspogpdn.]f

tion | ; d Fig 5) As th ) Ihorit if a variable is moved from one to another, the posterior
operation IS performe (see Fig. 5). 'S the grouping a ori probabilities of the mixture components are fixed and ondy th
is run for many iterations, the probabilities are slowly pteal

: . : parameters of the components related to the moved varisble a

instead of keeping them fixed because changed. The cost of these two groups is then calculated for

« it is difficult to determine probabilities which are approtomparison with their previous cost. The approximation can
priate for an arbitrary data set; and be justified by the fact that if a variable is highly dependmt

« during a run of the algorithm, the efficiency of differenthe variables in a group, then the same mixture model should
operations varies—for example, the split operation & it as well.

seldom beneficial in the beginning of the iteration (when

the groups are small), but it becomes more useful when V. APPLICATIONS, EXPERIMENTS

the sizes of the groups tend to grow. Problems in which IVGA can be found to be useful can be

The adaptation is carried out by measuring the efficienéj¥ided into the following categories. First, IVGA can beeds

(in terms of reduction of the total cost of all the mogfor confirmatorypurposes in order to verify human intuition of
els) of each operation. The probabilities of the operatio®& €xisting grouping of variables. The first synthetic peabl
are gradually adapted so that the probability of an efficieRfesented in Section V-A can be seen as an example of this
operation is increased and the probability of an inefficiefPe- Second, IVGA can be used &xplore observed data,
operation decreased. The adaptation is based on low-pi& iS, to make hypotheses or learn the structure of the data

filtered efficiency, which is defined by The discovered structure can then be used to divide a complex
modeling problem into a set of simpler ones as illustrated in
efficiency = _& @) Section V-B. Third, if we are dealing with a classification
At problem, we can use IVGA to reveal the variables that are
whereAC is the change in the total cost ard is the amount dependent with the class variable. In other words, we can use
of CPU time used for the operation. IVGA also for variable selectionor dimension reductiornn

Based on multiple tests (not shown here) using varioggPervised learning problems. This is illustrated in Seck-
data sets, it has turned out that adaptation of the operatFén
probabilities instead of keeping them fixed significantlgegs

: . 4 ; A. Toy Example
up the convergence of the algorithm into a final grouping. ) ) ) )
2) “Compression” of the Models:Once a model for a In order to illustrate our IVGA algorithm using a simple and

variable group is computed, it is sensible to be stored,dtm:aeasny understandable example, a data set consisting of one

it is a previously computed good model for a certain variabfgousand points in a four-dimensional space was syntfisize
group may be later needed. The dimensions of the data are calleducation, income,

Computation of many models—for example, a mixtur&€ight, andweight. All the variables are real and the units
model—is stochastic, because often a model is initializétie arbitrary. The data was generated from a distribution in

randomly and trained for a number of iterations. Howeve‘?{hich both educa_ltion and income are statistically independ
computation of such a model is actuatlgterministigorovided of h_elggt ahnd we||grt1t. ¢ educai . height
that the state of the (deterministic) pseudorandom numbelF'gh't st\:cvs plots of educa |0Intve][sug mctqme, e'r? . \r:ts
generator when the model was initialized is known. Thus, p{eignt, and for comparison a plot ot egucation vs. height.

order to reconstruct a model after it has been once computg FS mgy ﬁbsderve, that '? tr_lefsubspaces of the f|rstdtve|vo plots
we need to store (i) the random seed, (ii) the number gt F19. 6, the data points lie in few, more concentrated ewsst

iterations that were used to train the model, and (iii) thelelo and thus can generally be described (modeled) with a lower

structure. Additionally, it is also sensible to store (ilptcost cost in comparison to the third plot. As expect_ed, when_the
of the model. So, a mixture model can be compressed irﬂf‘)‘ta was given to our IVGA model, the resulting grouping
two floating point numbers (the random seed and the cost\$#s
the model) and two integers (the number of training iteretio

and the number of mixture components). Table | compares the costs of some possible groupings.

{{education, income}, { height, weight}}.
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Fig. 6. Comparison of different two-dimensional subspafethe data. Due
to the dependencies between the variables shown in thewiospittures it is

useful to model those variables together. In contrast,erldkt picture no such
dependency is observed and therefore no benefit is obtained rhodeling

the variables together.

B. Printed Circuit Board Assembly

Grouping Total Cost Parameters

{eihw 122334 288

{e,it{hw} 12081.0 80

{e}{i{hH{w}  12736.7 24

{e.n{iH{w} 12739.9 24

{e.it{h}{w} 12523.9 40

{e}{i}{hw} 12304.0 56
TABLE |

A COMPARISON OF THE TOTAL COSTS OF SOME VARIABLE GROUPINGS OF
THE SYNTHETIC DATA. THE VARIABLES EDUCATION, INCOME, HEIGHT,
AND WEIGHT ARE DENOTED HERE BY THEIR INITIAL LETTERS ALSO
SHOWN IS THE NUMBER OF REAL NUMBERS REQUIRED TO PARAMETERIZE
THE LEARNED OPTIMAL GAUSSIAN MIXTURE COMPONENT
DISTRIBUTIONS. THE TOTAL COSTS ARE FOR MIXTURE MODELS
OPTIMIZED CAREFULLY USING OURIVGA ALGORITHM. THE MODEL
SEARCH OF OURIVGA ALGORITHM WAS ABLE TO DISCOVER THE BEST
GROUPING, THAT IS, THE ONE WITH THE SMALLEST COST

added to the existing component database of the robot by
a human operator. The component data can be seen as a
matrix. Each row of the matrix contains attribute valuesmé o
component and the columns of the matrix depict component
attributes, which are not mutually independent. Building a
input support system by modeling of the dependencies of
the existing data using association rules has been coesider
in [20]. A major problem of the approach is that extraction of
the rules is computationally heavy, and memory consumption
of the predictive model which contains the rules (in our case
a trie) is very high.

We divided the component data of an operational assembly
robot (5016 components, 22 nominal attributes) into a ingin
set (80 % of the whole data) and and a testing set (the rest 20
%). The IVGA algorithm was run 200 times for the training
set. In the first 100 runs (avg. cost 113003), all the atteibut
were always assigned into one group. During the last 100
runs (avg. cost 113138) we disabled the adaptation of the
probabilities (see Section IV-A) to see if this would have an
effect on the resulting groupings. In these runs, we obthine
75 groupings with 1 group and 25 groupings with 2—4 groups.
Because we were looking for a good grouping with more than
one group, we chose a grouping with 2 groups (7 and 15
attributes). The cost of this grouping was 112 387 which was
not the best among all the results over 200 runs (111 791), but
not very far from it.

Next, the dependencies of (1) the whole data and (2)
the 2 variable groups were modeled using association rules.
The large sets required for computation of the rules were
computed using a freely available software implementation
of the Eclat algorithm [21]. Computation of the rules regsir
two parameters: minimum support (“generality” of the large
sets that the rules are based on) and minimum confidence
(“accuracy” of the rule). The minimum support dictates the

In the second experiment, we constructed predictive modgl§mper of large sets, which is in our case equal to the size of
to support and speed up user input of component data ofi@ model. For the whole data set, the minimum support was

printed circuit board assembly robot. When a robot is usedo, \yhich was the smallest computationally feasible value
in the assembly of a new product which contains components

that have not been previously used by the robot, the data ofsee it p: // wa adr em ua. ac. be/ ~goet hal s/ sof t var e/
the new components need to be manually determined andex. ht
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in terms of memory consumption. For the models of the two
groups it set to 0.1 %, which was the smallest as possiblevalu
so that the combined size of the two models did not exceed the
size of the model for the whole data. The minimum confidence ¢
was set to 90 %, which is a typical value for the parameter in
many applications.

The rules were used for one-step prediction of the attribute
values of the testing data. The data consisted of valuestedle
and verified by human operators, but it is possible that these
are not the only valid values. Nevertheless, predictioneewe
ruled incorrect if they differed from these values. Comgiata —0—34 (all) variables
times, memory consumption, and prediction accuracy for the .5/ | —e—3variables selected by IVGA
whole data and the grouped data are shown in Table II.
Grouping of the data both accelerated computation of the . . . . . . . , , , | |
rules and improved the prediction accuracy. Also note that  * % 5 7 % WS 28 cember . oo 20 A #
the combined size of the models of the two groups is only
about 1/4 of the corresponding model for the whole data.

o)
N

Accurracy [%]

(o]
(=]

Fig. 7. Classification accuracies for the lonosphere datayisNN classifier
with all the variables (white markers) and with only the wbies selected

Whole  Grouped using IVGA (black markers).
data data
Computation time (s) 48 9.1
Size of trie (nodes) 9863698 2707168
Forrect tpredidtz_titt)_ns (O@ 5;? 6;-3 The classification was carried out using tkenearest-
l\;‘fs‘;::]e; p‘r’ézic'g;?]rs‘s(o(ﬁ);) 38 333 neighbor g-NN) classifier. Out of the 351 samples 51 were

used for testing and the rest for training. In each expertmen
the testing and the training data sets were randomly drawn
from the entire data set and normalized prior to classificati
The averaged results of 1 000 different runs are shown in7Fig.
with various (odd) values fok. For comparison, the same
experiment was carried out using all the 34 variables. As can
be seen, the set of three features chosen using IVGA produces

The potential benefits of the IVGA in an application of thi learly better classification accuracy than the completeofe
atures whenevér > 1. For example, fok = 5 the accuracy

type are as follows. (1) It is possible to compute rules whi fr

yield better prediction results, because the rules arecbas®'"d IVGA was 89.6 % while for the complete set of features

. L. N 0,
on small amounts of data, i.e, it is possible to use small&vas 84.8 %.

minimum support for the grouped data. (2) Discretization of EXtensive benchmarking experiments using the lonosphere
continuous variables—which is often a problem in applic&ata set that compare PCA and Random Projection for dimen-
tions of association rules—is automatically carried outtyy Sionality reduction with a number of classifiers are repbrte
mixture model. (3) Computation of the association rules mag [23]- They also report accuracy in the original input spac
even be completely ignored by using the mixture models §if €ach method. Foi-NN this value is 86.7 %, withb-

the groups as a basis for the predictions. Of these, (1) wil 84.5 %, and with a linear SVM classifier 87.8 %. The

demonstrated in the experiment whereas (2) and (3) remaiff§st result obtained using dimension reduction was 88.7 %.
topic for future research. We used an identical test setting in our experiments with the

difference that feature selection was performed using IVGA
_ _ ) Using thek-NN classifier we obtained better accuracies than
C. Feature Selection for Supervised Learning: lonosphegg,y of the classifiers used in [23], including linear SVM, whe
Data they were performed in the original input space. Moreover,
In this experiment, we investigated whether the variabl¢¥ GA was able to improve somewhat even upon the best
grouping ability could be used for feature selection forselaresults that they obtained in the reduced-dimensionalespac
sification. One way to apply our IVGA model in this mannekVe also tested nonlinear SVM using Gaussian kernel by using
is to see which variables IVGA groups together with the clasgse same softwafewith default settings that was used in [23].
variable, and to use only these in the actual classifier. For the entire data set the prediction accuracy was weay, onl
We ran our IVGA algorithm 10 times for the the lonospher66.1 % whereas using the three variables selected by IVGA it
data set [22], which contains 351 instances of radar measusas the best among all the results in the experiment, 90.7 %.
ments consisting of 34 attributes and a binary class variabl A number of heuristic approaches to feature selection like
From the three groupings (runs) with the lowest cost, ea@trward, backward, and floating search methods (see e.}. [25
variable that was grouped with the class variable at leas¢ orexist and could have been used here as well. However, the goal
was included in the classification experiment. As a reshé, t
following three features were choseft, 5, 7}. 23ee [24] ancht t p: / / svnl i ght . j oachi ms. or g/ .

TABLE Il
SUMMARY OF THE RESULTS OF THE COMPONENT DATA EXPERIMENTALL
THE QUANTITIES FOR THE GROUPED DATA ARE SUMS OVER THE TWO
GROUPS ALSO NOTE THAT THE SIZE OF TRIE IS IN THIS PARTICULAR
APPLICATION THE SAME AS THE NUMBER OF ASSOCIATION RULES
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of the experiment was not to find the best set of features approach has been shown to be useful in real-world problems:
to demonstrate that the IVGA can reveal useful structure tifdecreases computational burden of other machine legrnin
the data. methods and also increases their accuracy by letting them
concentrate on the essential dependencies of the data.
VI. DISCUSSION The general nature of the IVGA principle allows many

Many real-world problems and data sets can be divid é)tentlal applications. The method can be viewed as a tool

: ) ) : or compact modeling of data, an algorithm for clustering
into smaller relatively independent subproblems. Autamat ~ . : : : .

. 7 A : . variables, or as a tool for dimensionality reduction anduea
discovery of such divisions can significantly help in apptyi

different machine learning techniques to the data by rergjciselpelti:;:t?dnén these interpretations allow for severalgtical

computational and memory requirements of processin Tﬁ . . . . .
b y reg P 9 iclustering — clustering of both variables and samples — is

IVGA principle calls for finding the divisions by partitiomg ery popular in bioinformatics. In such applications it tbu

the observed variables into §eparate_gr_oups so that theatnu\gue useful to ease the strict grouping of the variables of IVGA
dependencies between variables within a group are str

. ; are STHls could be accomplished by allowing different partigan
whereas mutual dependencies between variables in dlffergr?f . . .
ifferent parts of the data set using, for instance, a méxtur
groups are weaker. . . i .
. L . of-IVGAs type of model. Hierarchical modeling of residual
In this paper, the IVGA principle has been implemented be{ . . .
A . ependencies between the groups would be another inteyesti
a method that groups the input variables only. In the endethe ;
.- . : .o extension.
may also exist interesting dependencies between the thaili
variable groups. One avenue for future research is to extend
grouping model into a hierarchical IVGA that is able to model
the residual dependencies between the groups of variables.
From the perspective of using the method it would be usefulA mixture model for the random variable(t) can be
to implement many different model types including also dine written with the help of an auxiliary variable(t) denoting
models. This would allow the modeling of each variable groupe index of the active mixture component as illustrated in
with the best model type for that particular sub-probleng arthe right part of Fig. 4. In our IVGA model, the mixture
depending on the types of dependencies within the problemodel for the variable groups is chosen to be as simple as
Such extensions naturally require the derivation of a cagessible for computational reasons. This is done by reistgic

function for each additional model family, but there aregien the components(x(t)|0;, H) of the mixture to be such that

APPENDIX |
SPECIFICATION OF THEMIXTURE MODEL

tools for automating this process [26], [27]. different variables are assumed independent. This yields
The stochastic nature of the grouping algorithm makes its _ ‘ iy

computational complexity difficult to analyze. Empirigathe p(x(t)[H) = Zp(x(t)|91’H)p(c(t) =)

complexity of convergence to a neighborhood of a locally ’ ) (8)

optimal grouping seems to be roughly quadratic with respect = ZP(C(t) =1) Hp(xj (t)16s,5, H),

to both the number of variables and the number of data i J

samples. In case of number of samples this is because Wieered, ; are the parameters of thgh mixture component
data does not exactly follow the mixture model and thusr the jth variable. Dependencies between the variables
more mixture components are used when there are mare modeled only through the mixture. The variabldas
samples. Convergence to the exact local optimum typicaby multinomial distribution with parameters. that have a
takes significantly longer, but it is usually not necessay ®irichlet prior with parameters..
even nearly optimal results are often good enough in practic .
Although the presented IVGA model appears quite simple, plct)lme, H) = Multinom(c(t); ) ©)
several computational speedup techniques are neededtéor it p(me[uc, H) = Dirichlet(m; uc). (10)

work efficient_ly enough. Some of these may be of interest N The use of a mixture model allows for both categorical
themselves: |rr_espect|ve of the !VGA prlnmple. In partaru and continuous variables. For continuous variables theurgx
worth mentioning are the adaptive tuning of operation prolPS— a heteroscedastic Gaussian mixture, that is, all mixture

abilities in the grouping algorlthm (Sec. IV-B.1) as wellths components have their own precisions. Thus
model compression principle (Sec. IV-B.2).

By providing the source code of the method for public use p(x;(6)]0:,H) = N(z;(t); pij,pig), (11)
we invite others both to use the method and to contributeto ex

tending it. A MATLAB package of our IVGA implementationWhere pij is the mean andp;; is the precision of the
is available atht t p: // .cis.hut.fi/projects/ Gaussian. The parameters; andp; ; have hierarchical priors

i Vga/ ' p(ﬂi,j'ﬂujvpuj 5 H) = N(ﬂi,j; /’Lﬂj7pltj) (12)

p(pijlap;, B,y M) = Gammal(pi j; ap;, Bp;).  (13)
VII. CONCLUSION ) ) _ ) ) )
. . .. For categorical variables, the mixture is a simple mixture
In this paper, we have presented the independent Va”ag*emultinomial distributions so that
group analysis (IVGA) principle and a method for modeling

data through mutually independent groups of variables. The p(x;(¢)|0:.5, H) = Multinom(z; (¢); 7 ;). (14)
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APPENDIXII
DERIVATION OF THE COST FUNCTION AND UPDATE RULES

The probabilitiesr; ; have a Dirichlet prior

= Dirichlet(7r; j; u;). (15) The cost function of Eq. (6) can be expressed, ugihdo

denote expectation over as

<log q(0) )>
—logp(8)) — (logp(D|A)) (23)

»(D,0H
= (logq(0)
Now, being expected logarithms of products of probability
distributions over the factorial posterior approximatigrthe
terms easily split further. The terms of cost function are
presented as the costs of the different parameters and the
likelihood term. Some of the notation used in the formulae
is introduced in Table III.

p(mijlu;, H)

Combining these yields the joint probability of all paramet
ers (herec = [¢(1),...,c(T)]"):

p(D,c,me,m 1, p) = [ [plelme)|plmelu)
I

| 11 [p(ﬂm' |uj)}
[p(ﬂi-,j |qu y P )p(Pi,j |O‘pj s Bpj )} ]

j:x; categorical

j:x;j continuous

Symbol  Explanation
C Number of mixture components
H H p(z;(t)|e(t), . ;) T Number of data points
P jua; categorical Dcont Number of continuous dimensions

o ' The number of categories in nominal dimensipn

ug The sum over the parameters of a Dirichlet distribution
H p(x;(t)|e(t), u4,p.5)| (16) Iy(z)  Anindicator forz being of categoryk

j:a; continuous T The gamma function (not the distribution pdf)

v The digamma function, that i¥(z) = - In(I'(z))

w; (t) The multinomial probability/weight of théth mixture

All the component distributions of this expression haverbee

component in thew(¢) of data pointt

introduced above in Eqgs. (11)-(15).
The corresponding variational approximation is

TABLE Il
NOTATION

1, p) = q(c)a(me)g(m)a(p)a(p)
[aet)w(®)] a(m.la)

11
{Q(Hi,j m,ui,j ) ﬁ#i,j )Q(Pi,j |6‘pi,j ) Bpi,j )H (17)

A. Terms of the Cost Function

II

%

[Q(Wi7j|ﬁi,j)}
j:x; categorical <10g q(clw) — 10gp(c|7’l'c)> =

T C

Z Z wi(t 10g wi(t) — [¥(de,) — \I/(ﬂc0)]] (24)

t=1 i=1

[I

j:x; continuous

1=

with the factors

(log q(meltic) — log p(me|ue)) =

q(c(t)) = Multinom(c(t); w(t 18 < N . N .
;(5‘.2; - Dlrlchlet(;c(, )uc) (t)) 519; ; [(uC — 1) [P (the;) — U(iieo)] — log T (die,)
q(m; ;) = Dirichlet(7; j; 0; ;) (20) +log T'(tico) — logT'(ueo) + ClogT'(u.) (25)
a(pig) = N(Higs Ry Bip,.;) (21)
a(pi, J) = Gamma(p;, ' O‘pz D ﬂpl J) (22)

(log q([) — log p(m|u))
Because of the conjugacy of the model, these are optimal
forms for the components of the approximation, given the
factorization. Specification of the approximation allowset =, categorica
evaluation of the cost of Eq. (6) and the derivation of up-
date rules for the parameters as shown below in Appendix
Il. The hyperparameterg,,;, p,,,,;,3,, are updated using
maximum likelihood estimation. The parameters of the fixed
Dirichlet priors are set to values corresponding to therde$f
prior.

)W (i) — Wi, )]

Zlogl" uw, }
S.

+ C[ —log T'(uo,) + ; log F(Uj,k)}

] (26)



(log q(palfip, Pp) — log p(plprp, pp)) =

CD ont < /3 i
_ 7; + Z Z [log 2:7

j:zx; continuousi=1

+ B [l + Gy = m?]] - @D)

(1og q(plép, By) —logp(play, Bp)) =

C
Z Z [log F(apj) - 1Og F(dp1])

j:zx; continuousi=1

+ dpi,j 1Og Bm,j — Qp; 10g ﬁpj
+(Oépiyj _apj)(\l}(api,j)_logﬁpi,j) + Ap

Pi,j

(ﬁpj - Bpm)
(28)

T'log(27)Decon
( —logp(Dlc, we, m, b, p)) = %

T C
DM NETIEED S CTNRE)
i j:x; categorical
1 d i,J ~A— ~
g 3 [F w0 - )
j:x; continuous ~Pi.j

— ((ay,,) — logﬁpi,j)w }

(29)

B. On the lteration Formulae and Initialization

The iteration formulae for one full iteration of mix-
ture model adaptation consist of simple coordinate-wise
re-estimations of the parameters. This is like expectation
maximization (EM) iteration. The update rules of the hyper-
and 3, are based on maximum

parametersi,;, pu,,» p,
likelihood estimation.

12

1) Updatew

w; (t) —exp <‘1’(ﬁci)+

>

j:x; categorical

>

j:x;j continuous

{\I/(ﬁi,j,zj(t)) — U (dp, )}

N =

(30)

Xpi (PA;}] + (@ (t) = fin,,)?)
Pi.i
_ (\I}(dp”) — log BP?])})
w; (t)
wilt) — =~
S wp(t)
2) Updatetii.

T
Ue; — Ue + Z w;(t) (31)
t=1

3) Update categorical dimensions of the mixture compon-

ents

T
ik ik + Y wi(O) Tz, (t))

t=1

(32)

4) Update continuous dimensions of the mixture compon-

ents
& i T
PPy + [;p_ =D wilt);(t)
~ Pi,j
Hpi; E— (33)
Pu; + gp,d_ p=1 wi(t)
« T
Pui.; Pu; + Lo Zwi(t) (34)
Pig t=1
1 T
i(t 35
apmg<_aP3+2;w() ( )
1 T
/Bpi,j — Bpj + 5 Zwi(t) [ﬁ;lld + (ﬂll«i,j — Ty (t))g}
t=1
(36)
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