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Generative models that discover dependencies between

data sets

Arto Klami and Samuel Kaski

Helsinki University of Technology

Adaptive Informatics Research Centre

P.O.Box 5400, FI-02015 HUT, Finland

Abstract

We develop models for a kind of data fusion task: Combine multiple data sources
under the assumption that data set specific variation is irrelevant and only between-
data variation is relevant. We extend a recent generative modeling interpretation of
Canonical Correlation Analysis (CCA), a traditional linear method applicable to this
task, in a way which allows generalization to other types of models. The generative
formulation makes all standard tools of Bayesian inference applicable. We finally intro-
duce new dependency-seeking clustering models that outperform standard generative
clustering models in their task.

1 Introduction

We study the task of modeling dependencies between two data sets of co-occurring or paired
samples (x, y). In other words, the task is to find what is shared by, or statistically in common
in x and y. The underlying assumption is that variation within either data set alone is more
noisy, or at least less interesting than variation that is in common. Example tasks include
translation where the x and y are sentences in different languages, or measurement data
from two different kinds of noisy sensors such as gene expression arrays, that measure the
same system.

This task has been classically solved by Canonical Correlation Analysis (CCA) [1], or
more recently by other methods that maximize mutual information such as the Information
Bottleneck [2]. Mutual information measures deviation from independence and is hence
arguably a very good objective function for finding dependencies. Unfortunately it is defined
for distributions and not data sets, and hence cannot handle well uncertainties caused by
the finiteness of the data sets. Alternative Bayes factor-based dependency measures have
been proposed for the task [3], but even they do not take all uncertainties into account.

Bayesian generative modeling of joint distributions, in this case of p(x, y), is a traditional
well-justified framework for modeling finite data sets. Complexity control of models can be
formulated rigorously, which makes it possible to use flexible model structures and constrain
their complexity according to the data.

Standard flexible models will, by default, try to model all variation within the data, and
hence they would be even too flexible for modeling of dependency between data sets. In more
focused modeling tasks it is customary to constrain the solution space using explicit prior
knowledge to make independence assumptions between the variables, resulting in models
structured according to the specific system being modeled.

Recently [4] it was suggested that a simple independence assumption would be sufficient
for turning a generative joint distribution model into CCA. This is striking since dependency
modeling and generative modeling of joint densities had earlier been considered very different
tasks. The new finding raises the immediate questions of how general the relationship

1



z

x y

z z z

x y

x y w w

x

z

y

y

z

zx x y

(a) (b) (c)

Figure 1: Three model structures for dependency modeling, all sharing the property that
the observed variables x and y have some latent variables in common.

is, and under what conditions it holds. More generally, it would be very interesting to
better understand the the relationship between the two tasks. We will start exploring these
questions in this paper.

In summary, the main finding is that if a generative model has a very flexible model
for both of the marginals (x and y) separately, then a very constrained model for the
relationships will specialize in capturing dependencies between the data sets. We will explain
and justify this in more detail, and introduce some new models which utilize this insight.

2 Model structure for dependency exploration

A Bayes network or graphical model can be used to represent independence assumptions in
a model: if two nodes are not connected with an edge, there is no direct relation between
the two variables. Traditionally, the model structure is learned from data to represent the
real dependencies, but we can also use the same framework to force the model to use certain
parameters for describing the dependencies. This can be done by imposing independence
assumptions to suitable locations. The main goal of this paper is to assess whether this kind
of structural focusing can help in finding dependencies.

Here we will consider three simple structures (Figure 1) for modeling two (usually mul-
tivariate) variables (x and y). All models share the property that the variables interact only
through a common latent variable (or group of variables). Some general-purpose methods
can be derived already from these simple structures, and thus they serve as a good basis for
studying the properties of modeling dependencies with generative models.

3 Canonical correlation analysis

Canonical correlation analysis (CCA) is a classical linear model for finding dependencies [1].
It is formulated as finding the linear transformations Wx and Wy such that each dimension of
Wxx correlates maximally with the corresponding dimension of Wyy. CCA thus finds what
the two data sets have in common, and does that explicitly by maximizing the correlation.
It can be effectively computed by solving a certain generalized eigenvalue problem, and the
solution is a unique global optimum.

It was recently shown that, rather surprisingly, we can find the CCA solution also as
the maximum likelihood solution of a certain probabilistic model [4]. This is somewhat
counterintuitive, considering how traditional CCA optimizes a completely different criterion.
We will here start by summarizing the interpretation given in [4], and then proceed to an
extended model structure that helps to explain why the probabilistic version of CCA could
be derived.

The model structure used by [4] corresponds to that in Figure 1 (a), and the actual
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model is given by

z ∼ N(0, I),

x|z ∼ N(Wxz,Ψx),

y|z ∼ N(Wyz,Ψy),

where we have assumed zero mean data for simplicity, and do not explicitly mention the
dimensionalities to keep the notation more compact. The technical derivations revealing the
connection to CCA can be found in [4], but the main point is that the maximum likelihood
estimates for the projections Wx and Wy have a connection to the CCA projections, and,
particularly, that the posterior expectations of z given x and y lie on the CCA projection
space.

An important observation is that the marginal covariance matrix of the pair (x, y) in the
above model is

(

WxWT
x + Ψx WxWT

y

WyWT
x WyWT

y + Ψy

)

, (1)

and that the connection to classical CCA is retained as long as we have a model that
has identical marginal covariance. It is worth noticing how the different parameters affect
different parts of the covariance. Most notably, the parameters Ψ only affect the part related
to one data set. The key to why the above model leads to canonical directions must lie here,
but [4] offers no explanations.

We now proceed to explain the interpretation by extending the probabilistic model. We
adopt the model structure in Figure 1 (b) with separate latent variables for the marginals,
and define the following model

z, zx, zy ∼ N(0, I),

x|z ∼ N(Wxz + Bxzx, σ2

xI),

y|z ∼ N(Wyz + Byzy, σ2

yI).

Given the latent variables each sample is thus generated as a signal fusion with fixed diagonal
noise. Alternatively we can think of the model for each data set as probabilistic PCA [5, 6],
because Wxz + Bxzx could be written simply as W̃ z̃ for W̃ = [Wx, Bx] and z̃ = [zT , zT

x ]T .
The novelty is in sharing part of the latent variables between two PCAs.

The marginal covariance matrix of the model is

(

WxWT
x + BxBT

x + σ2

xI WxWT
y

WyWT
x WyWT

y + ByBT
y + σ2

yI

)

,

which is structurally identical to that in (1). We can think of BxBT
x + σ2

xI as an approxi-
mation to Ψx, and if the dimensionality of zx is high enough (equals the dimensionality of
the data x) we can directly factorize Ψx as BxBT

x , leading to σ2

x = 0. From this it follows
that given complex enough latent variables the second model equals the first, and thus also
finds the solution of classical CCA.

While the original CCA can be solved as an eigenvalue problem, the extended model
that allows varying marginal model complexities needs to be optimized with an iterative
method. An expectation maximization (EM) algorithm for optimization is given in Figure
2.

3.1 Properties of the model

The above formulation for CCA has a few interesting consequences, which will be discussed
here. First, being a probabilistic derivation it allows the use of standard techniques of
generative modeling, such as model complexity selection and utilizing prior information, to
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1. Marginalize over zx and zy to get model with covariance matrix of the form (1)
where we have Ψx = BxBT

x +σ2

xI and Ψy = ByBT
y +σ2

yI. Update the parameters
W = [Wx,Wy] using the EM step

W = ΣAT
(

M + AΣAT
)

−1

.

Here M =
(

I + WT Ψ−1W
)

−1

, A = MWT Ψ−1, and Ψ is a block-diagonal matrix
that consists of Ψx and Ψy. Σ is the joint sample covariance matrix.

2. Marginalize over z, and optimize the parameters related to x. The update rule for

Bx is identical to the above one, but Ψ = WxWT
x +σ2

xI, M =
(

I + BT
x Ψ−1Bx

)

−1

,
A = MBT

x Ψ−1, and Σ is the sample covariance of x. For σ2

x we get

σ2

x =
1

dx

trace
(

Σ − ΣAT BT
x − WxWT

x

)

,

where dx is the dimensionality of x, and Bx is the new value just updated. Do
exactly the same for parameters related to y.

Figure 2: EM algorithm for optimizing the extended probabilistic CCA repeats the two steps
until convergence. The second step can be repeated a few times in a row to improve the
convergence of the marginal models, avoiding unnecessary use of parameters W to model
the marginals.

be used in canonical correlation based analysis. For this the original derivation by [4] is
already sufficient.

The model also allows generalizing CCA-based analysis from normal distribution to other
(exponential family) distributions, already suggested in [4]. For this purpose, however, our
derivation from a more complete model structure is an important step. It illustrates how the
canonical correlation solution is found only when the marginal models (that were implicit
in the original derivation) are capable of modeling any possible variation within each data
set alone. A similar observation was made in the context of discrete variables by [7], who
showed that maximizing the likelihood of a co-clustering is equivalent to maximizing the
mutual information between the clusters if we assume that the marginal densities given
clusters are known exactly.

If marginal latent variables of lower dimensionality are used, we lose some of the ca-
pacity required for modeling the within-data variation, and the optimal solution uses W

for modeling individual data sets as well. While the model may still be a reasonably good
generative model, it does not capture the dependencies correctly. This will be demonstrated
empirically in Section 5.

Another interesting observation is that modeling the marginal distributions is related
to the whitening operation used for preprocessing data. It has previously been shown that
classical CCA can be though of as whitening both data sets separately, followed by principal
component analysis (PCA) of the concatenated whitened variables (see e.g. [8]). Here the
role of the whitening step is played by the marginal models, which suggests a probabilistic
interpretation of whitening in this context, as well as a generalization of similar preprocessing
step to model families other than those consisting of linear projections.

4 Dependency-seeking clustering

An interesting generalization of the above formulation is to use clustering models, as several
real-world data sets have inherent cluster structure instead of linear relations. Unfortunately,
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the requirement of being able to model all possible variation using the marginal models is a
lot more difficult to satisfy when the data no longer comes from a single exponential family
distribution, such as a Gaussian. Still, we can derive practical dependency-seeking clustering
algorithms by making simplifying assumptions.

4.1 Simple model

In the simplest case we assume that only the common effects have cluster structure, but the
variation within each cluster is still linear. The actual model with assumption of normality
is then given by

z ∼ Mult(θ), zx, zy ∼ N(0, I),

x ∼ N(µz
x + Bxzx, σ2

xI),

y ∼ N(µz
y + Byzy, σ2

yI),

where µz
x denotes the mean vector for the x-space corresponding to the cluster z. In principle

we could have an uninformative model for z as in the CCA case, but allowing different weights
makes more sense in most clustering tasks.

We can again marginalize over zx and zy, and end up with a model where x ∼ N(µz
x, BxBT

x +
σ2

xI). Using zx of full dimensionality gives equivalent parameterization in the form x ∼
N(µz

x,Ψx), and we can directly write the final clustering model as

z ∼ Mult(θ),

(x, y) ∼ N(µz,Ψ), (2)

where

Ψ =

(

Ψx 0
0 Ψy

)

.

In summary, the model is a normal mixture model for data where the two feature vectors
have been concatenated, with the restriction that the covariance of the clusters is shared and
has a block-diagonal structure. The intuitive approach to clustering such data would be to
use the full covariance matrix. It would in this case lead to individual clusters modeling also
some of the dependencies, and even though it might be better in terms of the likelihood it
would still be worse for making inference on the dependencies. In the other extreme where
the covariance matrix would be restricted to be completely diagonal, the model would use
cluster structure to model also within-data variation, again losing some of the dependencies.

Note that this suggests that the covariance matrix should be restricted also in cases
where the variables in both data sets are expected to have correlation (for example, due
to being measurements of the same actual property conducted with different measurement
techniques). This is because we specifically want to capture the real link between the two
data sets into the cluster structure, instead of the within-cluster covariance. This is in
contradiction to the traditional approach, where all prior information naturally should be
included in the model structure as well as possible.

4.2 More structured variant

The clustering model (2) requires quite strict assumptions for the data. Even though it will
still lead to improved performance in many dependency exploration tasks, it is worthwhile
to study if we can do something better.

In principle we would like to build a model where z acts as a cluster index, and the
marginal models are complex enough to represent any meaningful structure in each data set
within one cluster. Without restricting to any special cases, the best we could do would be
to allow some general mixture model for the marginals as well, but marginalizing over the
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latent variables of such a model would be practically impossible. We thus take an alternative
approach, where we accept that the marginal models are going to be insufficient, and try
to focus on dependencies by specifying a more complex model for the joint effects. With
suitable structure we can avoid at least part of the cases where the clusters are used to
describe marginal variation.

We replace the middle part of the model with a hierarchy that also contains an indepen-
dence assumption between two new latent variables wx and wy (Figure 1 (c)). The actual
model is given by

z ∼ Mult(θz),

wx ∼ Mult(θz
wx

), wy ∼ Mult(θz
wy

), (3)

x ∼ N(µwx

x ,Ψx), y ∼ N(µwy

y ,Ψy),

where we have already marginalized over zx and zy. The model can be optimized using an
EM algorithm, which reminds closely the EM algorithm for the classical Gaussian mixture.
The update formulas are given in Appendix A.

The improvement compared to the model (2) is that the hierarchy can be used to detect
and model correctly cases where either of the marginal distributions within a single cluster is
multimodal. The algorithm solves this kind of situation by choosing the θz

w for that cluster
to have two or more active components.

The model is formulated so that first a higher-level cluster z is selected, and based on
that we independently select lower-level clusters wx and wy. Alternatively we can think of
this as a process where a pair of lower-level clusters is chosen from a joint distribution of wx

and wy. In this interpretation the prior p(wx, wy) is not independent, but not completely
free either. The model corresponds to representing the prior as a sum of independent priors.

The latter interpretation links the model to the associative clustering (AC) [3]. In AC
the task is to find marginal clusterings for two data sets so that the contingency table formed
by the sample counts is as dependent as possible. Here the samples could be assigned to
the (wx, wy) clusters in a probabilistic way, leading to a table of “counts” with similar
interpretation. From this perspective the proposed clustering method is a probabilistic
alternative to AC that directly maximizes a measure of dependency. Comparing the two
alternatives more thoroughly is, however, beyond the scope of this paper.

5 Experiments

Here we verify empirically some of the properties claimed in the previous sections. These
experiments are not a comprehensive study on the performance of the methods, but aim
to demonstrate the kind of effects one should anticipate, and know how to deal with, in
dependency exploration tasks performed by probabilistic modeling.

5.1 CCA and marginal model complexity

In Section 3 we claimed that the probabilistic formulation of CCA only holds when suffi-
ciently complex marginal models are used. Here we demonstrate that the EM algorithm for
extended CCA indeed converges to the classical CCA solution given full complexity, and
show that this does not hold with lower complexity.

For this purpose we use a simple generated data set that has a subspace (three dimen-
sions) with significant correlation and the rest of the dimensions (three) in both data spaces
are more or less independent noise. 1000 samples are drawn from the distribution, and
the solutions are computed using the EM algorithm (Figure 2) for various marginal model
complexities. The results are computed as averages over 100 different data sets.

We compare the variants by measuring squared correlation (sum of squared canonical
correlations when there is more than one dimension) between the posterior expectations
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Figure 3: The correlation of the posterior expectations increases as a function of the marginal
model complexity, and moves from the PCA solution (no marginal models) to CCA solution
(full complexity). The lines present different subspace dimensionalities, increasing from 1
(bottom line) to 5 (topmost line).

E[zx|x] and E[zy|y]. CCA is known to find the maximal value, whereas PCA for the con-
catenated variables has no particular reason to find correlating projections. In Figure 3
the correlation within the subspace is illustrated for varying marginal model complexities
and dimensionalities of the subspace, and it is evident that too low a complexity leads to
decreased performance in finding the canonical directions. What is sufficient depends on the
number of dimensions sought, and ultimately on the data in question.

5.2 Dependency-seeking clustering

Evaluating the performance of a clustering algorithm is often quite difficult task, as no
definitive measures for assessing the quality exist. Here even the validation data likelihood
cannot be used, as it is not necessarily optimal criterion for dependency exploration task.
A more direct measure of dependency is required, and as the clustering algorithms are here
extended from canonical correlation analysis, we decided to study how closely they can
mimic the solution of CCA. The algorithms are compared to the alternative of using an
unrestricted joint model, here a normal Gaussian mixture with full covariance matrix, to
see whether they can find the dependencies better than the naive approach of modeling all
variation.

We use the same data set used in the previous demonstration. Even though the data
comes from a single Gaussian, the independence assumption means that clusters are required
for modeling the dependent parts. As a practical measure for the similarity of the results,
we measure the variance of the cluster centroids in the CCA subspace: the solutions that
focus on modeling directions perpendicular to the subspace will have small variation within
the subspace.

We averaged the variances of a normal mixture model with full covariance matrix and the
model (2) over 100 runs. The resulting average variance for normal mixture model was 0.09
(standard deviation 0.04), and 0.26 (deviation 0.08) for the block-diagonal variant, showing
that the latter reveals clearly more (98 out of 100 runs) structure in the canonical subspace.
The values are for 6 clusters, but similar results are obtained with other complexities as
well.

As a more real example, we cluster yeast genes based on two expression measurements
of different stressful treatments (time-series of heat shock and diamide treatment). The
measurement data was obtained from [9], and preprocessed like in [8]. The common thing
between the measurements should be general stress, and thus we compare the clustering
results to a list of environmental stress response (ESR) genes by [9] (two-class problem,
each gene either is or is not an ESR). The average “classification accuracy” (percentage of
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Figure 4: Analysis of two data sets, x and y, where we are only interested in what they have
in common. Both figures are scatter-plots between two dimensions, and the samples are
marked according to their cluster index (three clusters). (a) The model learns to ignore a
noise dimension, even though it has clear structure. (b) Multimodality in signal dimensions
does not affect clusters if it appears in only one of the data sets.

training samples from the same class in a cluster; random assignment gives 75.7%) over 10
random data splits (half of the samples for training and half for validation) was 81.1% for
normal mixture model, and 86.0% for model (2). The latter is significantly better (Wilcoxon
signed rank test, p < 0.002). Again the number of clusters was arbitrarily fixed to 6. It is
worth noticing that the normal mixture model had significantly higher likelihood on both
training and validation data due to modeling more within-data variation, but it still tells
less about yeast stress.

5.3 Multimodal marginal clusters

The advantage of the structured variant (3) over the simpler clustering model is that it can
cope with multimodalities in marginal clusters. The ability is demonstrated on toy data with
two two-dimensional data sets. First dimensions of both data sets are dependent, whereas
the other dimensions are independent but structured noise. A three-cluster solution by the
model (3) is illustrated in Figure 4. Not only has the algorithm ignored the dimensions
containing structured noise, but it has also grouped the cluster that has two modes in the
dependent plane.

As another example, we also clustered the Multiple Features Database1 that contains
several feature sets for handwritten number recognition. We picked the Karhunen-Loeve
coefficients and the Zernike moments, and reduced both feature sets to just two dimensions
using PCA, to make the problem more challenging. Furthermore, we added three dimensions
with bimodal Gaussian distribution to both data sets to increase within-data variation. We
used the same accuracy measure as above, this time averaging over 20 runs. With 10-cluster
solutions we got 15.4% for normal mixture model, 17.5% for (2), and 27.4% for (3) (using
15 values for w). All differences are significant according to the Wilcoxon signed rank test
(all p-values below 0.004), and low values are due to the high noise ratio.

6 Discussion

In this paper we studied the use of generative models in finding dependencies between two
data sets. Traditionally, dependencies have been sought by explicitly optimizing a criterion

1from http://www.ics.uci.edu/∼mlearn/MLRepository.html
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for dependency, using methods such as canonical correlation analysis (CCA) or various
clustering methods optimizing the mutual information. Recently CCA was interpreted as
a generative model, which lead us to study whether generative models could be used for
dependency exploration tasks in other cases as well.

Based on a re-interpretation of the probabilistic CCA we were able to show that a
necessary condition for a generative model to reveal dependencies is that the model contains
flexible enough parts for both of the marginals. We then extended the principle to clustering,
and derived two clustering models for seeking dependencies. Both were demonstrated to find
dependencies better than an unrestricted joint model, and in particular the simpler model
performed surprisingly well in a practical application of combining two gene expression data
sets of yeast stress.

The exact relationship between explicit dependency optimization and generative depen-
dency-seeking models remains to be studied. The latter allows rigorous treatment of finite
data, but the first can be used also in cases where building a sufficiently good generative
model would be impossible. It is also worth studying whether the two alternatives could be
combined.
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[8] J. Nikkilä, C. Roos, E. Savia, and S. Kaski, “Explorative modeling of yeast stress
response and its regulation with gCCA and associative clustering,” International Journal
of Neural Systems, vol. 15, no. 4, pp. 237–246, 2005.

[9] A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz,
D. Botstein, and P. O. Brown, “Genomic expression programs in the response of yeast
cells to environmental changes,” Molecular Biology of the Cell, vol. 11, pp. 4241–4257,
2000.

A EM algorithm for structured clustering variant

In the expectation step the posterior probabilities of latent variables given sample pairs
(xi, yi) are computed using

p̂i(z, wx, wy) =
p(z)p(wx|z)p(wy|z)p(xi|wx)p(yi|wy)

∑

z,wx,wy
p(z)p(wx|z)p(wy|z)p(xi|wx)p(yi|wy)

,

where the notation p(z) means the probability of the latent variable z having a specific
value, and

∑

z means summation over all possible values. The marginal posteriors required
in the maximization formulas are obtained by simple summation, as all latent variables are
discrete.

The maximization formulas for the parameters of x-space are

θz =

∑N

i=1
p̂i(z)

N
,

θz
wx

=

∑N

i=1
p̂i(z, wx)

∑N

i=1
p̂i(z)

,

µwx

x =

∑N

i=1
p̂i(wx)xi

∑N

i=1
p̂i(wx)

,

Ψx =

∑

wx

∑N

i=1
p̂i(wx)(xi − µwx

x )(xi − µwx

x )T

N
.

where N denotes the number of sample pairs. The update formulas for y-space are obtained
by replacing x with y in the above formulas.
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