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Learning from Relevant Tasks Only

Samuel Kaski and Jaakko Peltonen⋆⋆
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P.O. Box 5400, FI-02015 TKK, Finland

{samuel.kaski,jaakko.peltonen}@tkk.fi

Abstract. We introduce a problem called relevant subtask learning, a
variant of multi-task learning. The goal is to build a classifier for a task-
of-interest having too little data. We additionally have data for other
tasks but only some are relevant, meaning that they contain samples
classified in the same way as in the task-of-interest. The problem is how
to utilize this “background data” to improve the classifier in the task-of-
interest. We show how to solve the problem for logistic regression classi-
fiers, and demonstrate that the solution works better than a comparable
multi-task learning model. The key is to assume that data of all tasks
are mixtures of relevant and irrelevant samples, and model the irrelevant
part with a sufficiently flexible model such that it does not distort the
model of relevant data.

Key words: multi-task learning, partially relevant data, relevant sub-
task learning, transfer learning

1 Introduction

All too often in classification tasks there is too little training data to estimate suf-
ficiently powerful models. This problem is ubiquitous in bioinformatics, where
the dimensionality of data measured with “high-throughput” techniques such
as gene expression microarrays is large; this is known as the large p, small n

problem, where p is the dimensionality and n is the number of data. The same
problem appears also in image classification from few available examples, finding
of relevant texts, etc. The possible solutions are to restrict the complexity of the
classifier by incorporating prior knowledge, or to measure or find more data. Un-
fortunately prior knowledge may not exist or it may be insufficient, measuring
new data may be too expensive, and there may not exist more samples of repre-

sentative data. Most classifiers assume that the learning data is representative
in the sense that it all comes from the same distribution as the test data.

There often is partially representative data available; for instance in bioinfor-
matics there are databases full of data measured for different tasks or in different
conditions or contexts, and for text models there is the web full of texts. As-
suming that some of the background data sets are relevant, they can each be
considered training data from a (partially) different distribution as the test data.

⋆⋆ The authors contributed equally to the work.
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The learning problem can be formalized as follows: Assume several data sets
of which one is special in the sense that it is known to come from the same
distribution as future test data. The other data sets come partly from that same
distribution, in the sense that in each set, some portion of the samples (0-100%)
has been classified according to the same criteria as the “proper” training data.
The rest of the samples come from some other distribution, which is typically
different for each set. The question now is, can we use the partially relevant data

sets to build a better classifier for the test data?

This learning problem is special type of multi-task learning. If learning a
classifier for one data set is called a task, then the research problem of multi-
task learning [1] is to find out whether learning all tasks together helps in learning
each. The multi-task models have mainly been symmetrical, and transfer to new
tasks is currently done by using the posterior from the other tasks as a prior (e.g.
[2, 3]). We take a more direct approach to focusing on the task-of-interest, which
results in different kinds of models which are better suited in the new task while
being of the same order of complexity as the earlier multi-task learning models.
Our learning problem is fundamentally asymmetric and more structured; the
test data fits one of the tasks, the “task of interest,” and some of the other tasks
contain subtasks that are relevant for the task of interest, but no other task
needs to be completely relevant.

More generally, this problem can be seen as a combination of information
retrieval and supervised learning: the data from the task of interest can be seen
as a query, which is used to retrieve relevant other tasks (or relevant parts of
other tasks), and the found relevant data are then used to supplement the scarce
original data while learning a classifier. Everything is done with a generative
model, which allows rigorous treatments of small data sets.

2 Previous Work

The problem is partly related to several other learning problems: transfer learn-
ing, multi-task learning, and semisupervised learning.

Many variants of multi-task learning have been proposed. A common ap-
proach is to build a hierarchical (Bayesian) model of all tasks together. Informa-
tion sharing between tasks can then be done by using constrained prior distribu-
tions that favor similarity of parameters between tasks. The tasks may be learned
either together (e.g. [4–6]) or previous tasks can be used to learn a prior for a
new task (e.g. [2, 3]). Both approaches are based on modeling all tasks symmet-
rically with a hierarchical (Bayesian) model. Symmetric hierarchical modeling
has also been used in support vector machine learning (e.g. [7]). By contrast, we
study an asymmetric situation where there is a specific task-of-interest and only
some tasks, or parts thereof, are relevant for it.

Some multi-task learning-based solutions exist where all tasks are not con-
sidered relevant for all others. In [8] the tasks are assumed to come from clusters,
such that tasks in the same cluster are generated with the same parameters. The
model learns to cluster tasks in order to share data between the tasks in each
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cluster. A similar approach based on clustering or gating of tasks is used in [9],
and based on support vector machines in [7]. However, in all these approaches
all tasks are still equally important with respect to the clustering so there is no
specific task-of-interest.

There are some interesting but partly heuristic transfer learning approaches
where a single task-of-interest does exist. In [10] two strategies are used: a single
global weighting parameter is used to control the weight of auxiliary samples in
nonparametric classification, or background data are used as support vectors or
constraints in support vector machines. In [11] a flexible model is used where
extra variables are used in logistic regression to artificially improve the log-
likelihood of undesirable samples of auxiliary data, and a constraint on the use
of the extra variables forces the model to seek useful auxiliary samples.

Semisupervised learning [12] is related to the learning problem in this paper
as well: Whether a sample is relevant for the task-of-interest or not can be con-
sidered a binary-valued auxiliary label which is known for the “proper” training
data but unknown for the background data. In this sense, the learning problem is
semisupervised with regard to the auxiliary label. We emphasize, however, that
predicting relevance of background samples is only part of our learning problem;
the true goal is to predict classes within the task-of-interest.

3 Relevant Subtask Learning

3.1 The Setting

Consider a set of classification tasks indexed by S = 1, ..., M . For each task S we
have a training data set DS = {xi, ci}

NS

i=1
where the xi ∈ R

d are d-dimensional
input features, the ci are the class labels, and NS is the number of training
samples for that task. In this paper we assume for simplicity that d is equal in
all tasks and all tasks are two-class classification tasks where ci is either +1 or
-1. The process that generates the classes is, however, different in each task. One
task, with index U , is the task-of-interest, and the rest are supplementary tasks.

Some portion (0-100%) of the samples of each supplementary task are as-
sumed to come from the same disribution as the task-of-interest. The rest come
from some other distribution which may be different for the different supplemen-
tary tasks.

We wish to learn to predict classes well for data that come from the task-of-
interest. We are not interested in the other tasks except as a source of information
for the task-of-interest. Note that there are no paired samples between the tasks;
thus, the only connections between the tasks are the possible similarities in their
underlying distributions, which we do not know beforehand.

3.2 The Principle

The relevant subtask learning problem is to build a classifier, or more specifically
a model for the class density p(c|x, U) in task U , because test data is known to
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come from this distribution. In addition to data DU = {(ci,xi)}
NU

i=1
of task U ,

there are data DS from other tasks S available. The assumption is that some
samples of each DS may come from the distribution p(c|x, U) but the rest do
not.

To model the data, a model family (family of classifiers) must of course be chosen
for the task-of-interest by the analyst; the choice is done as usual based on prior
knowledge, or resorting to a nonparametric or semiparametric model. Particular
models in the family are denoted by p(c|x, U ;wU ), where wU are the parame-
ters whose values identify the model. This is standard practice; the interesting
question is how to model the relationships between the task-of-interest and the
other tasks, which we will discuss next.

For each of the supplementary tasks S, it is assumed that part of the data
samples come from the same distribution p(c|x, U ;wU ), but part from another
distribution. The former are relevant for modeling the task-of-interest whereas
the latter are not, and hence the supplementary data set is partially relevant.
The analyst needs to specify a model for the non-relevant samples as well. This
can again be done based on prior information but typically a nonparametric
or semiparametric model would be used to avoid the excessive manual work of
collecting prior infomation about all tasks. Denote the model for the non-relevant
samples of subtask S by pnonrelevant(c|x, S;wS).

Since we assume the task S to be a mixture of relevant and nonrelevant
samples, the model for it should be

p(c|x, S; θ) = (1 − πS)p(c|x, U ;wU ) + πSpnonrelevant(c|x, S;wS) , (1)

where πS ∈ [0, 1] is a parameter modeling the proportion of irrelevant samples
in task S and θ denotes all parameters of all tasks. Note that this model reduces
to p(c|x, U ;wU ) for the task-of-interest (where πS = 0).

The solution is to use (1) to model the data. The idea behind the functional form
is that a flexible enough model for pnonrelevant “explains away” irrelevant data
in the auxiliary subtasks, and hence p(c|x, U ;wU ) learns only on the relevant
data. In other words, by forcing one of the (here two) subtasks to use the same
parameters in all tasks, we force the model to find from the other tasks the
common part that is useful for the task of interest. We call this method Relevant

Subtask Model (RSM).
The tradeoff here is that to improve performance on the task-of-interest,

we need to spend considerable computational time to model data of all the
supplementary data sets as well. This is sensible assuming the bottleneck is the
amount of learning data in the task-of-interest.

3.3 Case Study: Logistic Regression

In this paper we introduce our solution with a simple parametric model, but we
stress that the method can easily be generalized to more general parametric or
semiparametric models.
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We will model the task-of-interest U with a logistic regression model,

p(c|x, U ; θ) =
1

1 + exp(−cwT
Ux)

. (2)

For notational simplicity the bias term has been included in the weight vector
(here wU ), which is well known to result in standard logistic regression when an
extra dimension with constant value 1 is added to all input vectors x.

We model the non-relevant data in the other tasks with logistic regression
models as well. Each supplementary task S has a different regression model,
having its own parameters:

pnonrelevant(c|x, S; θ) =
1

1 + exp(−cwT
S x)

(3)

where wS is the weight vector. Hence the supplementary tasks are each generated
from a mixture of two logistic regression models:

p(c|x, S; θ) =
1 − πS

1 + exp(−cwT
Ux)

+
πS

1 + exp(−cwT
Sx)

(4)

where πS is the mixture weight.

3.4 Optimization

This paper is intended to present a proof of concept that the model (4) works as
expected. We will use simple methods, maximum conditional likelihood estima-
tion and standard conjugate gradients, and spend effort to designing controlled
experiments. More advanced methods will be added in later papers.

Since the task is classification, or more specifically modeling of the distribu-
tion of classes given data, the objective function is the conditional log-likelihood

LRSM =
∑

S

∑

i∈DS

log p(ci|xi, S; θ) (5)

where S goes over all tasks including the task-of-interest, and p(ci|xi, S; θ) is
given in (4).

To optimize RSM, we use standard conjugate gradient optimization to max-
imize the objective function (5) with respect to the parameters (wU , the wS ,
and the πS).

4 Comparison Methods

We compare the new method RSM to three alternative standard approaches,
which assume progressively stronger relationships between the tasks. The set
of comparisons is intended as a proof-of-concept. The models and optimization
strategies are relatively simple but comparable across the approaches. More ad-
vanced versions will be compared in later work.

All methods are optimized by maximizing the (conditional) likelihood with
a standard conjugate gradient algorithm.
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4.1 Single-Task Learning

The obvious way to learn a given task is to only use the learning data of that
task, and not to try to benefit from the other tasks at all. This “single-task
learning” strategy is expected to work well if there is a lot of data, otherwise it
will overfit. Alternatively, single-task learning is wise if the other available tasks
are known to be very different.

The RSM model naturally reduces to single-task learning if no other tasks are
available. We simply used a single logistic regression model (2) for the single-task
learning.

4.2 Multi-task Learning by Task Clustering

Currently one of the most promising multi-task learning strategies is to assume
the tasks to come from task clusters, such that parameters of the tasks are shared
within each cluster [8]. For this proof-of-concept study we simplify the state-of-
the-art full-Bayesian approaches to a maximum likelihood -estimated clustering
that is comparable to the other methods. This does not reduce generality since
all approaches can in principle be given a full-Bayesian treatment.

Assume that there is a fixed number K of underlying task clusters. To keep
model complexity comparable to RSM, each task cluster k consists of a mixture
of two logistic regression models:

p(c|x, k; θ) =
πk

1 + exp(−cwT
k,1x)

+
1 − πk

1 + exp(−cwT
k,2x)

(6)

where the weight vectors wk,1, and wk,2 and the mixing weight πk are the
parameters of cluster k. Each task is fully generated by one of the K clusters,
but it is unknown which cluster. The conditional class probability of task S is
therefore

p({ci}i∈DS
|{xi}i∈DS

, θ) =

K∑

k=1

γk|S

∏

i∈DS

p(ci|xi, k; θ) (7)

where the {ci}i∈DS
and {xi}i∈DS

are the set of class labels and the corresponding
set of input vectors from task S, and the parameter γk|S is the probability that
task S comes from cluster k.

The parameters (weights, mixing weights, and cluster probabilities for each
task) are optimized by maximizing the conditional class likelihood

LTCM =
∑

S

log p({ci}i∈DS
|{xi}i∈DS

, θ) . (8)

We call this model “Task Clustering Model” (TCM). It is meant to be a max-
imum likelihood version of [8], but having a more complex model per clusters
(mixture of two instead of one logistic regression model).
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4.3 Learning from All Data

The “extreme” multi-task alternative is to assume all data from all tasks to be
useful, and to learn from them all as if they all came from the task-of-interest.
We call this strategy “all together;” it may work well if all tasks are very similar,
otherwise it will lose the distinctive features of the task-of-interest in the mixture
of all tasks.

This is essentially the TCM model having a single cluster.

5 Experiments

We studied the performance of the models in three different experimental set-
tings. The models RSM and TCM make different assumptions; we start from
a task domain where the assumptions of both methods hold, and study with
artificial data sets how the methods tolerate progressive deviations from their
assumptions.

When the assumption that tasks come from clusters is violated, the perfor-
mance of TCM degrades. The new RSM however, seems to be even surprisingly
tolerant to deviations from the assumption of a shared subtask, if there is enough
data in the task-of-interest to determine relevance of other tasks.

In the last experiment we use a more realistic scenario of classifying test
documents from the Reuters-21578 collection according to the interest of one
user, when classifications from other users with different interest profiles are
available.

We will use the following terminology: A multi-task learning problem consists
of multiple tasks, each having its own learning data coming from a certain dis-
tribution. The multi-task problem comes from a problem domain which specifies
the distribution of the data in each task, and the relationships of the tasks.

5.1 Experiment 1: When Task Clustering Fails

In this experiment we created a continuum of multi-task problem domains where
the relationship between the task-of-interest and the other tasks changes. The
continuum was set up so that the tasks always follow the assumptions of RSM
but the assumption of underlying task clusters in TCM starts to fail. The setting
is explained in a schematic diagram in Figure 1 (left).

Technically, we constructed 10 problem domains each having different char-
acteristics, and generated 40 learning problems from each domain. Each learning
problem consisted of 10 tasks; the number of samples in each supplementary task
was uniformly sampled from the interval 250–500, whereas for the task-of-interest
the number of samples was three times smaller (i.e., uniform in the interval 83–
167). In each task, the input features xi were samples from a 5-dimensional
Gaussian, and the labels ci were sampled from a mixture of two logistic regres-
sion models. The weight vectors of those models were chosen differently in each
problem domain, so that the domains form a continuum progressively worse for
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TCM; Figure 1 (left) shows a conceptual illustration of the setup. After pick-
ing the classes, we lastly added a small amount of extra Gaussian noise to the
features.

Figure 1 (right) shows the results as a function of the progressively chang-
ing domain, averaged over the 40 learning problems. RSM attains very high
performance in all domains, close to the upper limit computed by using the pa-
rameters with which the data was generated. (The bound is only approximate
because noise has been added to the input vectors afterwards.) The performance
of TCM decreases as the tasks become less clustered, as expected. The number
of clusters in TCM was set to the correct value used when generating the data,
to give some advantage to the comparison method.

Both of the naive methods perform poorly. For “all together” the reason is
that only some background data are relevant for the task-of-interest; placing
all data into one data set introduces noise as well as useful information. For
single-task learning the very poor performance and large variance are due to
overfitting: generalization performance depends on whether the small “proper”
training data happened to look like the underlying distribution or not.
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Fig. 1. Comparison of RSM to TCM and two naive methods, on a continuum of do-
mains that are progressively less suited for TCM. Left: conceptual illustration; columns
are domains and rows are tasks within a domain. All tasks (data sets) are generated
from a mixture of two logistic regression models whose weight vectors are shown as
lines. One subtask (line ending in the closed ball) is present in all tasks and corresponds
to the task-of-interest. The other subtask (line ending in the open ball) is common to
clusters of tasks in the leftmost domain, but in the rightmost domain it is different for
each individual task. Right: Results; 40 learning problems (10 tasks in each problem)
were generated from each domain in the continuum, and the four methods were applied
to them. The curves show average performances over the replications. RSM maintains
high performance for all domains while TCM becomes progressively worse.



Learning from Relevant Tasks Only 9

5.2 Experiment 2: When Relevant Subtask Modeling Fails

In the previous experiment we showed that RSM outperforms TCM when the
assumptions of RSM match the problem domain better. In this experiment we
show what happens when the assumptions of RSM go wrong.

The setting is explained in Figure 2 (left). We created a continuum of problem
domains as in the first experiment (10 domains, 40 problems per domain, 10 tasks
per problem). Here the domain continuum was set up so that the generation of
the tasks always follows the assumptions of TCM but the assumptions of RSM
become violated progressively more: neither of the two logistic regression models
needs to be common to all tasks.

The results are shown in Figure 2 (middle). TCM maintains high performance
for all domains, as expected because the tasks come from task clusters in all
domains. RSM starts with equal performance but becomes progressively worse
as its assumptions begin to fail; however, it is always better than the naive
methods (single-task learning and “all together”). The naive methods behave as
in the first experiment.

In the above results the task of interest had less data than the other tasks.
Intuitively, this means RSM tries to retrieve relevant tasks using very little in-
formation for the “query.” We ran an additional experiment where the task-of-
interest had a comparable amount of data (uniformly picked between 250–500
samples). The results are shown in Figure 2 (right). Single-task-learning overfits
somewhat less of course, but the most interesting change is for RSM: it maintains
high performance throughout the domain continuum. This is because RSM is
able to locate the relevant tasks (here the ones from the same task cluster as the
task-of-interest). RSM does not overfit to the other tasks; technically, it mod-
els the other tasks almost completely with the task-specific logistic regression
model. This demonstrates successful “information retrieval” of relevant tasks.

5.3 Experiment 3: Predicting Document Relevance

In this experiment we have real data, news articles from the standard Reuters-
21578 collection, but simulated users in order to again control the problem do-
main. The “users” browse the collection labeling articles “interesting” or “unin-
teresting” according to their personal interests. The goal is to learn to predict
interestingness of articles for one user, the “user-of-interest.” The learning prob-
lem can be seen as a combination of collaborative filtering and content-based
prediction. Earlier work on such combination includes, for example, [13] where
a partly heuristic kernel combination is used, and [14] where naive Bayes is used
to fill in missing ratings which are then used in collaborative filtering.

The user-of-interest is interested in a particular news category and labels
documents according to whether they belong to that; here we used the sec-
ond largest Reuters category “acq” because the smaller categories had too few
samples. The other nine users are each interested in the “acq” category (and
label documents according to it) part of the time, but at other times they are
interested in a different category specific to that user.
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Fig. 2. Comparison of RSM to TCM and two naive methods on domains progressively
less suited for RSM. Left: conceptual illustration. In all domains, tasks are clustered;
tasks in a cluster are generated from the same logistic regression models (shown as
lines). In the leftmost domain, one subtask (line ending in the closed ball) is the same
in all clusters; this common subtask corresponds to the task-of-interest. In the rightmost
domain, all clusters are completely different. All the domains can be learned by TCM;
RSM fits the leftmost domain well but not the rightmost domain. Middle: Results
for a continuum of 10 problem domains (10 tasks in each; all results are averages over
40 replicates); only little data in the task-of-interest (1/3 compared to others). Right:
Results when the amount of data in the task-of-interest is comparable to the other
tasks.

We performed a simplistic feature extraction for this proof-of-concept study.
First stopwords were removed, numeric expressions were replaced with tags,
etc. Documents were then represented as vectors of word counts. We performed
a two-step dimensionality reduction: first, the 200 most “informative” words
were selected1 and other dimensions were discarded (documents with less than
10 words remaining were also discarded); then the dimensionality was further
reduced to 5 by linear discriminant analysis. As a result we had 5-dimensional
samples, 8194 in total.

As a design parameter we varied how much of the other users’ data was
labeled according to “acq” on average. For each value we repeated the experiment
10 times to reduce variation due to initializations and sampling variation in the
small datasets. In each repetition, 41–83 documents were labeled by the user-
of-interest and 250–500 by each of the other users; 1000 documents from the
user-of-interest were left apart as test data. On average one third of each user’s
documents were labeled “interesting” according to that user’s specific interests.

We ran RSM, TCM2, and the naive methods for all experiments. The results
are shown in Figure 3 as a function of the design parameter. RSM performs
best. Since there is little data for the user-of-interest, single-task learning overfits

1 In brief, words that had the largest contributions to the empirical mutual information
between documents and words were chosen; see [15] for details.

2 Here we used K = 6 clusters to make the number of parameters in RSM and TCM
roughly equal.
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badly. TCM and the simple “all together” method perform about equally here. At
the extreme where all data begins to be relevant, RSM, TCM and “all together”
naturally converge to the same performance level.
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Fig. 3. Comparison of RSM to TCM and two naive methods on Reuters data. Average
results over 10 generated problems are shown, as a function of one design parameter,
the average probability that a sample is relevant to the task-of-interest. RSM performs
the best. Performance of single-task learning varies highly due to overlearning; the
worst results (at design parameter values 0.75 and 0.95) do not fit in the figure.

6 Conclusions

We have introduced a new problem called relevant subtask learning, where the
goal is to use multiple background tasks to help learn one task-of-interest. We
showed how a carefully constructed but generally applicable graphical model
solves the problem; the crucial idea is to model relevant parts of other tasks with
a shared mixture component, and nonrelevant parts by (at least equally) flexible
models, to avoid a performance tradeoff between the task-of-interest and the
other tasks. Using a simple logistic regression classifier as an example, we showed
that the resulting “relevant subtask model” (RSM) outperforms a comparable
traditional multi-task learning model and two naive alternatives, on continuums
of toy problems and on a more realistic text classification experiment.

The method is not restricted to logistic regression, and in fact not even to
supervised learning. In this paper we used simple maximum conditional likeli-
hood estimators, which will be generalized to full-Bayesian treatments of more
general models in the next stage.
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