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Abstract

Variational methods for approximate infer-
ence in machine learning often adapt a para-
metric probability distribution to optimize
a given objective function. This view is
especially useful when applying variational
Bayes (VB) to models outside the conjugate-
exponential family. For them, variational
EM algorithms are not easily available, and
gradient-based methods are often used as al-
ternatives. However, regular gradient meth-
ods ignore the Riemannian geometry of the
manifold of probability distributions, thus
leading to slow convergence. We propose us-
ing the Riemannian structure of the approxi-
mations and the natural gradient to speed up
a conjugate gradient method for variational
learning and inference. As the form of the
approximating distribution is often very sim-
ple, the natural gradient can be used for both
model parameters and latent variables with-
out significant computational overhead. Ex-
periments in variational Bayesian learning of
nonlinear state-space models for real speech
data show more than ten-fold speedups over
alternative learning algorithms.

1 INTRODUCTION

Variational Bayesian (VB) methods provide an effi-
cient and often sufficiently accurate deterministic ap-
proximation to exact Bayesian learning. Most work on
variational methods has focused on the class of con-
jugate exponential models for which simple EM-like
learning algorithms can be derived easily (Ghahramani
and Beal, 2001; Winn and Bishop, 2005).

Nevertheless, there are many interesting more com-
plicated models which are not in the conjugate ex-
ponential family. Similar variational approximations

have been applied for many such models (Barber and
Bishop, 1998; Seeger, 2000; Lappalainen and Honkela,
2000; Valpola and Karhunen, 2002; Valpola et al.,
2004; Honkela and Valpola, 2005). The approximating
distribution q(θ|ξ), where θ includes both model pa-
rameters and latent variables, is often restricted to be
Gaussian with a somehow restricted covariance. Val-
ues of the variational parameters ξ can be found by
using a gradient-based optimization algorithm.

When applying a generic optimization algorithm for
such problem, a lot of background information on the
geometry of the problem is lost. The parameters ξ of
q(θ|ξ) often have different roles, as the distribution has
separate location, shape, and scale parameters. This
implies that the geometry of the problem is in most,
especially more complicated cases, not Euclidean.

Information geometry studies the Riemannian geomet-
ric structure of the manifold of probability distribu-
tions (Amari, 1985). It has previously been applied to
derive efficient natural gradient learning rules for max-
imum likelihood algorithms to problems such as inde-
pendent component analysis (ICA) (Yang and Amari,
1997; Amari, 1998) and multilayer perceptron (MLP)
networks (Amari, 1998) as well as to analyze the prop-
erties of general EM (Amari, 1995), mean-field vari-
ational learning (Tanaka, 2001), and online VB EM
(Sato, 2001).

In this paper we propose using the Riemannian struc-
ture of the distributions q(θ|ξ) to derive more efficient
algorithms for approximate inference and especially
mean field type VB. The method can be used to jointly
optimize all the parameters ξ of the approximation
q(θ|ξ), or in conjunction with variational EM for some
parameters. The method is especially useful for mod-
els that are not in the conjugate exponential family,
such as nonlinear models (Barber and Bishop, 1998;
Seeger, 2000; Lappalainen and Honkela, 2000; Valpola
and Karhunen, 2002; Honkela and Valpola, 2005) or
non-conjugate variance models (Valpola et al., 2004)
that may not have a tractable exact variational EM
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algorithm.

2 INFORMATION GEOMETRY

AND NATURAL GRADIENT

Let F(ξ) be a scalar function defined on the manifold
S = {ξ ∈ Rn}. If S is a Euclidean space and the
coordinate system ξ is orthonormal, the length of a
small incremental vector w is given by

|w|2 =

n
∑

i=1

w2

i , (1)

where wi is the ith component of the vector w. The
direction of steepest ascent, i.e. the direction that max-
imizes F(ξ + w) under the constraint |w|2 = ǫ2 for a
sufficiently small constant ǫ, is given by the gradient
∇F(ξ).

If the space S is a curved manifold, there is no or-
thonormal coordinate system and the the length of a
vector w differs from the value given by Eq. (1). Rie-
mannian manifolds are an important class of curved
manifolds, where the length is given by the positive
quadratic form

|w|2 =
∑

i,j

gij(ξ)wiwj . (2)

The n × n matrix G(ξ) = (gij(ξ)) is called the Rie-
mannian metric tensor and it may depend on the point
of origin ξ. On a Riemannian manifold, the direc-
tion of steepest ascent is given by the natural gradient
(Amari, 1998)

∇̃F(ξ) = G−1(ξ)∇F(ξ). (3)

For the space of probability distributions q(θ|ξ), the
most common Riemannian metric tensor is given by
the Fisher information (Amari, 1985)

Iij(ξ) = gij(ξ) = E

{

∂ ln q(θ|ξ)

∂ξi

∂ ln q(θ|ξ)

∂ξj

}

(4)

= E

{

−
∂2 ln q(θ|ξ)

∂ξi∂ξj

}

,

where the last equality is valid given certain regularity
conditions (Murray and Rice, 1993).

2.1 COMPUTING THE RIEMANNIAN

METRIC TENSOR

When applying natural gradients to approximate in-
ference, the geometry is defined by the approximation
q(θ|ξ) and not the full model as usually. If the ap-
proximation q(θ|ξ) is chosen such that disjoint groups

of variables are independent, that is,

q(θ|ξ) =
∏

i

qi(θi|ξi), (5)

the computation of the natural gradient is simplified as
the Fisher information matrix becomes block-diagonal.
The required matrix inversion can be performed very
efficiently because

diag(A1, . . . , An)−1 = diag(A−1

1
, . . . , A−1

n ). (6)

The dimensionality of the problem space is often so
high that inverting the full matrix would not be feasi-
ble.

2.2 NORMAL DISTRIBUTION

For the univariate Gaussian distribution parameter-
ized by mean and variance N(x; µ, v), we have

ln q(x|µ, v) = −
1

2v
(x − µ)2 −

1

2
ln(v) −

1

2
ln(2π). (7)

Further,

E

{

−
∂2 ln q(x|µ, v)

∂µ∂µ

}

=
1

v
, (8)

E

{

−
∂2 ln q(x|µ, v)

∂v∂µ

}

= 0, and (9)

E

{

−
∂2 ln q(x|µ, v)

∂v∂v

}

=
1

2v2
. (10)

The resulting Fisher information matrix is diagonal
and its inverse is given simply by

G−1 =

(

v 0
0 2v2

)

. (11)

In the case of univariate Gaussian distribution, natu-
ral gradient has a rather straightforward intuitive in-
terpretation as seen in Figure 1. Compared to conven-
tional gradient, natural gradient compensates for the
fact that changing the parameters of a Gaussian with
small variance has much more pronounced effects than
when the variance is large. The differences between
the gradient and the natural gradient are illustrated
in Figure 2 with a simple example.

For the multivariate Gaussian distribution parameter-
ized by mean and precision N(x; µ,Λ), we have

ln q(x|µ,Λ) = −
1

2
(x − µ)T Λ(x − µ)

+
1

2
log |detΛ| −

d

2
ln(2π),

(12)

                                   2



(a) (b)

(c) (d)

Figure 1: The absolute change in the mean of the
Gaussian in figures (a) and (b) and the absolute change
in the variance of the Gaussian in figures (c) and (d) is
the same. However, the relative effect is much larger
when the variance is small as in figures (a) and (c)
compared to the case when the variance is high as in
figures (b) and (d) (Valpola, 2000).
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Figure 2: The contours show an objective function of
the mean (horizontal axis) and the variance (vertical
axis) of a Gaussian model. Gradient (gray line) and
natural gradient (black line) are plotted at 16 different
points.

where d is the dimension of x. Rather straightforward
differentiation yields

E

{

−
∂2 ln q(x|µ,Λ)

∂µ∂µT

}

= Λ, (13)

E

{

−
∂2 ln q(x|µ,Λ)

∂µ∂Λ

}

= 0, and (14)

E

{

−
∂2 ln q(x|µ,Λ)

∂Λ∂Λ

}

=
1

2
Λ−1 ⊗ Λ−1, (15)

where ⊗ is the direct product, also known as the Kro-
necker product. Because the cross term is zero, the
resulting full Fisher information matrix is block diag-
onal and can be inverted simply by

G−1 = diag
(

Λ−1, 2Λ ⊗ Λ
)

. (16)

This result for the precision may not be very useful in
practice, as the approximations used in most applica-
tions have a more restricted form such as a Gaussian
with a factor analysis covariance Σ = D +

∑k

i=1
vvT ,

where D is a diagonal matrix, or a Gaussian Markov
random field.

3 OPTIMIZATION ALGORITHMS

ON RIEMANNIAN MANIFOLDS

Many of the traditional optimization algorithms have
their direct counterparts in Riemannian space. This
paper concentrates on gradient based algorithms, in
particular the generalized versions of gradient ascent
and conjugate gradient method.

3.1 NATURAL GRADIENT ASCENT

The natural gradient learning algorithm is analogous
to conventional gradient ascent algorithm and is given
by the iteration

ξn = ξn−1 + γ∇̃F(ξn−1), (17)

where the step size γ can either be adjusted adap-
tively during learning or computed for each iteration
using e.g. line search (Amari, 1998). This line search
should be performed or any longer step taken along a
suitable geodesic, which is a length minimizing curve
and therefore the Riemannian counterpart of a straight
line. In practice, geodesics are often approximated
with straight lines (Amari, 1998), as natural gradient
ascent is typically applied to problems with complex
geometries, and the geodesics on such manifolds can
be hard to derive and compute.

In general, the performance of natural gradient learn-
ing is superior to conventional gradient learning when
the problem space is Riemannian. For instance, nat-
ural gradient learning can often avoid the plateaus
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present in conventional gradient learning (Amari,
1998).

3.2 CONJUGATE GRADIENT METHODS

For better performance it can be useful to combine
natural gradient learning with some standard superlin-
ear optimization algorithm. One such algorithm is the
nonlinear conjugate gradient (CG) method (Nocedal,
1991). The conjugate gradient method is a standard
tool for solving high dimensional nonlinear optimiza-
tion problems. During each iteration of the conjugate
gradient method, a new search direction is generated
by conjugation of the residuals from previous itera-
tions. With this choice the search directions form a
Krylov subspace and only the previous search direction
and the current gradient are required for the conjuga-
tion process, making the algorithm efficient in both
time and space complexity (Nocedal, 1991).

3.2.1 Riemannian Conjugate Gradient

The extension of the conjugate gradient algorithm to
Riemannian manifolds is done by replacing the gra-
dient with the natural gradient. The resulting algo-
rithm is known as the Riemannian conjugate gradient
method (Smith, 1993; Edelman et al., 1998). In princi-
ple this extension is relatively simple, as it is sufficient
that all the vector operations take into account the
Riemannian nature of the problem space.

In Riemannian space, the line search should be per-
formed along a geodesic curve, which is the equivalent
of Euclidean straight line. Additionally, the old gra-
dient vectors g̃k−1 defined in a different tangent space
should be transformed to the tangent space at the ori-
gin of the new gradient by parallel transport along a
geodesic (Smith, 1993). The search direction of the
Riemannian conjugate gradient algorithm is given by

pk = g̃k + βτ(pk−1), (18)

where g̃k = ∇̃F(ξk) is the natural gradient and
τ(pk−1) is the previous search direction parallelly
transported to the current search point. For each iter-
ation, the function is optimized in the search direction
using a line search and the iteration is repeated un-
til satisfactory convergence is reached. The multiplier
β can be computed in multiple different ways. One
popular choice is the Polak-Ribiére formula (Nocedal,
1991; Smith, 1993; Edelman et al., 1998), which in
Riemannian space is given by

β =
(g̃k − τ(g̃k−1)) · g̃k

τ(g̃k−1) · g̃k

, (19)

where τ again denotes parallel transport from the pre-
vious search point to the current point.

3.2.2 Natural Conjugate Gradient

Like with natural gradient ascent, it is often necessary
to make certain simplifying assumptions to keep the
iteration simple and efficient. In this paper, geodesics
are approximated with (Euclidean) straight lines. This
also means that parallel transport cannot be used, and
vector operations between vectors from two different
tangent spaces are performed in the Euclidean sense,
i.e. assuming that the parallel transport between two
points close to each other on the manifold can be ap-
proximated by the identity mapping. This approxima-
tive algorithm is called the natural conjugate gradient
(NCG). A similar algorithm was applied to MLP net-
work training by González and Dorronsoro (2006).

For small step sizes and geometries which are locally
close to Euclidean these assumptions still retain many
of the benefits of original algorithm while greatly sim-
plifying the computations. Edelman et al. (1998)
showed that near the solution Riemannian conjugate
gradient method differs from the flat space version
of conjugate gradient only by third order terms, and
therefore both algorithms converge quadratically near
the optimum.

The search direction for the natural conjugate gradient
method is given by

pk = g̃k + βpk−1, (20)

and the Polak-Ribiére formula is given by

β =
(g̃k − g̃k−1) · g̃k

g̃k−1 · g̃k

. (21)

4 VARIATIONAL BAYES AND

NONLINEAR STATE-SPACE

MODELS

Variational Bayesian learning is based on approximat-
ing the posterior distribution p(θ|X) with a tractable
approximation q(θ|ξ), where X is the data, θ are the
unknown variables (including both the parameters of
the model and the latent variables), and ξ are the
(variational) parameters of the approximation. The
approximation is fitted by maximizing a lower bound
on marginal log-likelihood

B(q(θ|ξ)) =

〈

log
p(X,θ)

q(θ|ξ)

〉

(22)

= log p(X) − DKL(q(θ|ξ)‖p(θ|X)),

where 〈·〉 denotes expectation over q. This is equiv-
alent to minimizing the Kullback–Leibler divergence
DKL(q‖p) between q and p (Ghahramani and Beal,
2001).
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4.1 LEARNING ALGORITHMS

Finding the optimal approximation can be seen as
an optimization problem, where the lower bound
B(q(θ|ξ)) is maximized with respect to the variational
parameters ξ. This is often solved using a variational
EM algorithm by updating sets of parameters alter-
natively while keeping the others fixed. Both VE and
VM steps can implicitly optimally utilize the Rieman-
nian structure of q(θ|ξ) for conjugate exponential fam-
ily models (Sato, 2001). Nevertheless, the EM based
methods are prone to slow convergence, especially un-
der low noise. A number of methods exist to speed
up convergence of EM by more elaborate optimization
schemes (McLachlan and Krishnan, 1996; Salakhutdi-
nov et al., 2003) while retaining the alternating struc-
ture of E and M steps, but none of these has gained
enough popularity to supplant the EM.

The formulation of VB as an optimization problem al-
lows applying generic optimization algorithms to max-
imize B(q(θ|ξ)), but this is rarely done in practice be-
cause the problems are quite high dimensional. Addi-
tionally many of the parameters are in different roles
and the lack of this specific knowledge of the geometry
of the problem can seriously hinder generic optimiza-
tion tools.

There exist step lengthening methods that can be used
to extend variational EM algorithms such as the pat-
tern search method (Honkela et al., 2003) and adap-
tive overrelaxation (Salakhutdinov and Roweis, 2003).
These methods are easy to implement as they require
very little in addition to the EM algorithm. The down-
side of the methods is the relatively modest speedup,
typically only by a small constant factor while the
underlying, sometimes linear convergence behavior of
variational EM is retained.

4.2 NONLINEAR STATE-SPACE MODEL

As a specific example, let us study the nonlinear
state-space model (NSSM) introduced in (Valpola and
Karhunen, 2002). The model is specified by the gen-
erative model

x(t) = f(s(t),θf ) + n(t) (23)

s(t) = s(t − 1) + g(s(t − 1),θg) + m(t), (24)

where t is time, x(t) are the observations, and s(t)
are the hidden states. The observation mapping f and
the dynamical mapping g are nonlinear and they are
modeled with multilayer perceptron (MLP) networks.
Observation noise n and process noise m are assumed
Gaussian. The latent states s(t) are commonly de-
noted by θS . The model parameters include both the
weights of the MLP networks and a number of hy-
perparameters. The posterior approximation of these

parameters is a Gaussian with a diagonal covariance.
The posterior approximation of the states q(θS |ξS) is
also Gaussian, but some dependencies are modeled.
The different components of the state vectors are still
assumed independent. However, the correlations be-
tween the corresponding components of subsequent
state vectors sj(t) and sj(t − 1) are modeled. This is
a realistic minimum assumption for modeling the de-
pendence of the state vectors s(t) and s(t−1) (Valpola
and Karhunen, 2002).

Because of the nonlinearities the model is not in the
conjugate exponential family, and the standard VB
learning methods are not directly applicable. The
bound (22) can nevertheless be evaluated by lineariz-
ing the MLP networks f and g using the technique of
Honkela and Valpola (2005). This allows evaluating
the gradient with respect to ξS , ξf , and ξg and using
a gradient based optimizer to adapt the parameters.
These variables are updated jointly rather than us-
ing an EM-like split because the same heavy gradient
computations are needed for them all.

The natural gradient with respect to the parameters
of q(θS |ξS), q(θf |ξf ), and q(θg|ξg) was simplified by
only using the gradient-based updates for the mean
elements. For the parameters q(θS |ξS) the fully diag-
onal approximation for the inverse of the metric ten-
sor given by Eqs. (6) and (11) was used. Since the
parameters q(θf |ξf ) and q(θg|ξg) had a diagonal co-
variance, no further approximations were necessary.
Under these assumptions the natural gradient for the
mean elements is given by

∇̃µ
q
F(ξ) = diag(Σq)∇µ

q
F(ξ), (25)

where µq is the mean of the variational approximation
q(θ|ξ) and diag(Σq) is the diagonal of the correspond-
ing covariance.

Variances were updated separately using a fixed-point
update rule as described in (Valpola and Karhunen,
2002). The correlation parameters of q(θS |ξS) were
updated in EM style by assuming all other parameters
fixed. The remaining hyperparameters were updated
by VBEM.

5 EXPERIMENTS

As an example, the method for learning nonlinear
state-space models presented in Sec. 4.2 was applied
to real world speech data. Experiments were made
with different data sizes to study the performance dif-
ferences between the algorithms.

The data set in this experiment was a 21 dimensional
real world speech data set. The full data set con-
sisted of 2000 samples of mel frequency log power
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Figure 3: Part of the speech spectrum data used in
the experiments.

speech spectra of continuous human speech, which cor-
responds to roughly 15 seconds of real time. Part of
the data set can be seen in Figure 3.

To study the performance differences between the nat-
ural conjugate gradient (NCG) method, the conjugate
gradient (CG) method and the heuristic algorithm
from (Valpola and Karhunen, 2002), the algorithms
were applied to different sized parts of the speech
data set. Unfortunately a reasonable comparison with
a variational EM algorithm was impossible because
the extended Kalman smoother (Anderson and Moore,
1979) was unstable and thus the E-step failed.

The size of the data subsets varied between 100 and
500 samples. A five dimensional state-space was used
and the MLP networks for the observation and dy-
namical mapping had 20 hidden nodes. Five differ-
ent initializations were used to avoid problems with
local minima and the results were averaged over the
different iterations. An iteration was assumed to have
converged when |Bt−Bt−1| < (5·10−3/N) for 200 con-
secutive iterations, where Bt is the bound on marginal
log-likelihood at iteration t and N is the size of the
data set.

The results can be seen in Figure 4. In particular,
as the data size increases, natural conjugate gradient
tends to perform much better than the competing al-
gorithms. The slightly anomalous behavior at the data
size of 200 can be explained by a silent period in the
speech data set between samples 150 and 200.

The difference in the performance of the algorithms
can be at least partially explained by the fact that
the ratios of the variances of the different parameters
change as the data size increases. The variance of the
dynamical and observation mapping weights will tend
to get smaller as the data size increases, but there will
always be uncertainty left in the states. The variances
of Gaussian distributions scale the natural gradient as
seen in Eq. (25). Therefore large relative difference
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Figure 4: Convergence speed of the natural conju-
gate gradient (NCG) method, the conjugate gradient
(CG) method and the heuristic algorithm with dif-
ferent data sizes. Top: Absolute computation times.
Bottom: Relative computation times with the compu-
tation time of NCG method normalized to 1.

in variances can help to explain the poor performance
of methods based on flat geometry with larger data
sets, as the corrections imposed by the Riemannian
geometry become more significant. The effect of data
size on the variances is illustrated in Figure 5, where
the ratio of the minimum of the normalized variances
of the states and observation network output weights
is plotted against data size.

As a slightly more realistic example, the full data set
of 2000 samples was used to train a seven dimensional
state-space model. In this experiment both MLP net-
works of the NSSM had 30 hidden nodes.

The performance of the NCG method, CG method and
the heuristic algorithm was compared. The results can
be seen in Figure 6. Five different initializations were
used to avoid problems with poor local optima. The
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Figure 5: Ratio of the normalized posterior variance
of the states and the observation network output layer
weights after the iteration has converged. The results
are averaged over the different methods, as they all
produced similar results.
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Figure 6: Comparison of the performance of the natu-
ral conjugate gradient (NCG) method, the conjugate
gradient (CG) method and the heuristic algorithm
with the full data set. Lower bound on marginal log-
likelihood B is plotted against computation time.

results presented in Figure 6 are from the iterations
that converged to the best local optimum.

Natural conjugate gradient clearly outperformed the
other algorithms in this experiment. In particular,
conventional conjugate gradient learning converged
very slowly with this larger data set and regard-
less of initialization failed to reach a local optimum
within reasonable time. Natural conjugate gradient
also outperformed the heuristic algorithm (Valpola
and Karhunen, 2002) by a factor of more than 10.

6 DISCUSSION

In previous machine learning algorithms based on nat-
ural gradients (Amari, 1998), the aim has been to use
maximum likelihood to directly update the model pa-
rameters θ taking into account the geometry imposed
by the predictive distribution for data p(X|θ). The
resulting geometry is often much more complicated as
the effects of different parameters cannot be separated
and the Fisher information matrix is relatively dense.

In this paper, only the simpler geometry of the ap-
proximating distributions q(θ|ξ) is used. Because the
approximations are often chosen to minimize depen-
dencies between different parameters θ, the resulting
Fisher information matrix with respect to the varia-
tional parameters ξ will be mostly diagonal and hence
easy to invert.

While taking into account the structure of the approx-
imation, plain natural gradient in this case ignores the
structure of the model and the global geometry of the
parameters θ. This is to some extent addressed by us-
ing conjugate gradients, and even more sophisticated
optimization methods such as quasi-Newton or even
Gauss–Newton methods can be used if the size of the
problem permits it.

While the natural conjugate gradient method has been
formulated mainly for models outside the conjugate-
exponential family, it can also be applied to conjugate-
exponential models instead of the more common vari-
ational EM algorithms. In practice, simpler and more
straightforward EM acceleration methods may still
provide comparable results with less human effort.

The experiments in this paper show that even a di-
agonal approximation of the Riemannian metric ten-
sor is enough to acquire a large speedup. Considering
univariate Gaussian distributions, the regular gradient
is too strong for model variables with small posterior
variance and too weak for variables with large poste-
rior variance, as seen from Equations (8)–(10). The
posterior variance of latent variables is often much
larger than the posterior variance of model parame-
ters, which means that maximal benefit from the nat-
ural gradient can be attained by combining at least
parts of E and M steps of the variational EM.

When the data set is small, regular conjugate gradient
method works reasonably well. However, for larger
data sets natural conjugate gradient shows far superior
performance.

Initial experiments with natural gradient ascent (with-
out conjugacy) indicated that its performance is sig-
nificantly worse than the other compared algorithms.
However, it is possible that natural gradient ascent
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suffers more than natural conjugate gradient method
from the approximations made in the computation of
the Riemannian metric tensor.

7 CONCLUSION

We have presented a novel method to speed up learn-
ing methods based on optimizing an objective function
depending on a probability distribution, such as vari-
ational Bayesian learning. Taking into the account
the Riemannian structure among the variational pa-
rameters, the natural conjugate gradient algorithm is
efficiently used to update both latent variables and
model parameters at the same time. A simple form of
the approximate distribution translates into a simple
metric and a low computational overhead, but even for
more complicated approximating distributions a sim-
ple approximation of the metric can provide significant
speedups at very low extra computational cost.
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