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Discriminative MCMC

Kai Puolamäki, Jarkko Salojärvi, Eerika Savia and Samuel Kaski
Laboratory of Computer and Information Science

Helsinki University of Technology
P.O. Box 5400, FI-02015 TKK, Finland
firstname.lastname@hut.fi

Abstract

We discuss Bayesian modeling in the case where the model is incorrect.
Standard posterior distribution is optimal for inference if the true model
is within the model family. In the case of an incorrect model, we show
that for inference on conditioned distribution, a different posterior-type
distribution is optimal. We provide here an axiomatic justification of
previously suggested supervised posterior distribution, introduce Markov
Chain Monte Carlo -type methods for computing with the posterior, and
demonstrate empirically that it works as expected.

1 Introduction

In generative modeling tasks, it is well-known that usual Bayesian inference is not optimal
for generalizing to new data if the model family is incorrect, that is, if the data does not
come from any of the models within the model family. Arguably the best solution then is
to improve the model family by taking more of the prior knowledge into account. This is
not always possible or feasible, however, and simplified models are being generally used,
often with good results. There are good reasons for still applying standard Bayesian or
Bayesian-style techniques [1] but the general problem of how to best do inference with
incorrect model families is still open.

In discriminative modeling, here meaning inference on the distribution p(y|x), the question
of using discriminative vs. generative models has attracted a lot of interest. In essence,
the question has been whether to model p(y|x) directly or to build a generative model
for the joint distribution p(y, x) and compute the conditional distribution from that. It
is easy to show that, for instance, the point estimates computed by mazimizing the joint
likelihood and the conditional likelihood differ. Maximum conditional likelihood, coupled
with suitable regularization to avoid overfitting, works better asymptotically, and it can be
optimized with expectation-maximization-type procedures [2]. Some other related point
estimates have been proposed but while point estimates have been studied thoroughly, much
fewer results exist on trying to extend from point estimates to posterior distributions. The
standard posterior distribution is optimal for discriminative modeling if the model family
is correct, but is there an extension that would be analogous to standard Bayesian inference
but work better for incorrect model families?

We are aware of only one suggestion, the so-called supervised posterior [3], which is known
to work well in practice [4]. The posterior has however, as far as we know, only been sug-
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gested more or less heuristically. We give an axiomatic justification, introduce Markov
Chain Monte Carlo -type methods for computing with the posterior, and demonstrate em-
pirically that it works as expected. In the practical examples of this paper we apply the
supervised posterior to data where y is a categorical (class) variable, and thus the task is to
discriminate the different classes. In this experimental setup it is more natural to refer to
the posterior as discriminative.

There exists another well-established line of research on using Bayesian methods for dis-
criminative learning, namely Bayesian regression, where the x is considered as covariates
of the model for y. From the generative modeling perspective such regression ignores any
information about y supplied by x. This is justified if (i) the covariates are explicitly cho-
sen when designing the experimental setting and hence are not noisy, or (ii) a different set
of parameters generates x and y|x, and the sets are assumed to be independent in their
prior distribution. Then the posterior factors out into two parts, and the parameters used for
generating x are not needed or useful in the regression task. See for instance [5] for more
details.

For the purpose of regression, the discriminative posterior makes it possible to use model
structures where the parameters are not constrained, that is, any form of generative model.
The gained advantage compared to using the standard non-discriminative posterior should
be that the predictions should be more accurate assuming the model family is incorrect.
Compared to Bayesian regression the predictions should be better if the introduced gener-
ative model for x is informative.

2 Theory

2.1 All Distributions are Multinomial

It is useful to work with discrete distributions, where the number of possible data points is
finite. Continuous distributions can (almost) always be represented with a discrete distri-
bution, with discretization error. The discretization error can be made arbitrarily small by
increasing the number of possible data points within the discrete distribution.

We denote by X the set of possible data points. The most general discrete distribution for
X is the multinomial distribution that can be parameterized by probabilities θi = p(x|θ),
x ∈ X , i = 1, . . . , |X|. The dimensionality of the parameter space Θ is thus dim(Θ) =
|X| − 1.

The multinomial distribution describes all distributions for draws from X . The dimension-
ality of a multinomial distribution is, however, usually too large to be of any practical use.
To solve the dimensionality problem we can define a lower-dimensional subspace of the
full parameter space Θ ⊆ Θ. Equivalently, we can define a prior distribution p(θ) for the
parameters that satisfies p(θ) 6= 0, θ ∈ Θ, and p(θ) = 0 otherwise.

Consider for example a Gaussian distribution on a compact real axis, R = [a, b]. The
probability density function of the Gaussian can be parameterized by

p(x|x, x̃) =
1
Z

exp

(
− (x− x)2

2x̃

)
, (1)

where Z is the normalization factor. At the limit a, b → ±∞ the normalization factor
obeys Z →

√
2πx̃, where x̃ = σ2 is the variance.

The axisR can be divided into |X| partitions, denoted by xi = [ci−1, ci], where c0 = a and
c|X| = b and x ∈ X . We can now approximate the Gaussian with multinomial distribution
over X , x ∼ Multinomial(θ; |X|). The multinomial distribution (without any additional
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constrains) has a |X| − 1 dimensional parameter space, while the Gaussian has a two-
dimensional parameter space. If we are to approximate a Gaussian, we must therefore
select an appropriate two-dimensional subset Θ of the parameter space. This subset can be
defined by projection,

θi =
ci − ci−1

Z
exp

(
− (yi − x)2

2x̃

)
, (2)

where yi ∈ xi and x is over real axis and x̃ is over positive-definite real axis.

We can approximate the Gaussian with a multinomial in Θ with arbitrary precision by
making the partitions xi smaller and increasing their number.

Therefore, almost all distributions can be represented, with arbitrary accuracy, as a multi-
nomial distribution in a subset of the full multinomial parameter space.

2.2 The Best Point Solution is Usually not MAP

The multinomial distribution includes all possible distributions for x ∈ X . We can there-
fore safely assume that our data has been generated by this multinomial distribution with
some parameters θ̃. We do not know θ̃, but we can assume that there exists such parameters.

The parameter space of any realistic model, Θ, is usually much smaller than the parameter
space of the full model, Θ. It follows that in almost any practical application the model
is incorrect, i.e., θ̃ /∈ Θ. Usually in Bayesian statistics one just hopes that the model that
generated the data, θ̃ is close enough to the parameter space of the practical model Θ.

Let’s first consider the limit where the number of data samples is infinite. In Bayesian
statistics, at the limit of infinite data the posterior distribution g(θ) becomes a point solu-
tion, g(θ) = δ(θ− θ̂).1 At the limit of infinite data the the effect of the prior in Θ, in which
the prior is non-zero, vanishes. The only effect the prior has is due to the division of the
parameter space into Θ vs. Θ r Θ (non-zero prior vs. zero prior).

The best point solution θ̂ ∈ Θ (not necessarily the MAP solution) can usually (at least in
principle) be found by minimizing some suitable cost function K(θ̃, θ),

θ̂ = arg min
θ∈Θ

K(θ̃, θ) . (3)

The form of K(θ̃, θ) depends on the quantity we are approximating.

If we want to have an accurate approximation of the likelihood the suitable cost function
can be written in terms of Kullback-Leibler (KL) divergence as

KMAP (θ̃, θ) =
∑
x∈X

p(x|θ̃) log
p(x|θ̃)
p(x|θ)

. (4)

If the “model is correct,” i.e., θ̃ ∈ Θ, equation (4) is minimized to zero (at the limit
of infinite data) and the resulting point estimate is the known MAP solution. If θ̃ /∈ Θ
the resulting point estimate is the best estimate (in KL-sense) for the likelihood, p(x|θ̂).
KMAP (θ̃, θ̂) describes the KL-divergence between the “true” distribution at θ̃ and the MAP
estimate at θ̂.

However, The MAP estimate may not be optimal if we are interested in approximating
some other quantity than the likelihood. Assume, for example, that the data space X can

1Actually the posterior can also have many modes (point estimates) and in some special cases the
posterior is a manifold in Θ.
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be expressed as a product X = Y × Z, i.e., all x ∈ X can be decomposed into x = (y, z),
where y ∈ Y and z ∈ Z. Consider the problem of finding the best point estimate for the
conditional likelihood p(y|z, θ). The conditional likelihood actually has |Z| multinomial
distributions for y, y ∼ Multinomial(θz; |Y |). The average KL-divergence between the
true conditional likelihood at θ̃ and estimate at θ is given by

KCOND(θ̃, θ) =
∑
z∈Z

p(z|θ̃)
∑
y∈Y

p(y|z, θ̃) log
p(y|z, θ̃)
p(y|z, θ)

. (5)

The relationship between eqs. (4) and (5) can be written as

KMAP (θ̃, θ)−KCOND(θ̃, θ) =
∑
z∈Z

p(z|θ̃) log
p(z|θ̃)
p(z|θ)

≥ 0 . (6)

If the model is correct, or θ̃ ∈ Θ, the solutions are identical. However, if the model does not
accurately predict the marginal distribution p(z|θ̃) (implying θ̃ /∈ Θ), the MAP estimate is
worse in estimating the conditional likelihood.

Furthermore, we can decompose KCOND as

KCOND(θ̃, θ) = S(θ̃)−R(θ̃, θ) , (7)

where S(θ̃) =
∑

x p(x|θ̃) log p(y|z, θ̃) and R(θ̃, θ) =
∑

x p(x|θ̃) log p(y|z, θ) and x =
(y, z).

2.3 Posterior Distribution

In real world situations the amount of data is finite. We do not obtain a point estimate,
θ̂COND, but a posterior distribution over θ, given data D, denoted by g(θ|D).

We require the posterior distribution to satisfy the following.

1. When no data is observed the posterior equals the prior distribution, g(θ|∅) =
p(θ).

2. The posterior is multiplicative, i.e., g(θ|D) = Z−1
D p(θ)

∏
x∈D h(x, θ), where the

data-dependant normalization constant ZD is chosen so that
∫
dθg(θ|D) = 1, and

h(x, θ) are smooth (C∞) functions in θ ∈ Θ.

3. For all θ̃ ∈ Θ and θ1, θ2 ∈ Θ, the following condition is satisfied:

g(θ1|Dθ̃) ≤ g(θ2|Dθ̃) ⇔ K(θ̃, θ1) ≥ K(θ̃, θ2) ,

where Dθ̃ is a very large data set sampled from p(x|θ̃). We further assume that if
the equality holds on the other side, it also holds on the other.

Proposition 2.1 Given these axioms, the discriminative or supervised posterior is of the
form

pd(θ|D) =
1
ZD

p(θ)
∏

(y,z)∈D

p(y|z, θ)A , (8)

where A is an arbitrary positive constant. We can fix A = 1, e.g., by requiring that the
discriminative posterior reduces to the conventional Bayesian posterior for each fixed z.

The rest of this section is used for the proof of proposition 2.1.
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At the limit of n = |Dθ̃| � 1, and using the second axiom, the posterior can be written as

log g(θ|Dθ̃) =
∑

x∈Dθ̃

log h(x, θ)+log p(θ)−logZDθ̃
' n

∑
x∈X

p(x|θ̃) log h(x, θ)−logZDθ̃
.

(9)
That is, the contribution of the prior p(θ) can be neglected.

The third axiom states that asymptotically (at the limit of large but finite data set) the shape
of the posterior is such that posterior is always smaller if the “distance” KCOND(θ̃, θ) is
larger.

In other words, given a large data set Dθ̃, the last axiom can be rewritten as∑
x∈X

p(x|θ̃) log h(x, θ1) ≤
∑
x∈X

p(x|θ̃) log h(x, θ2) (10)

m∑
x∈X

p(x|θ̃) log p(y|z, θ1) ≤
∑
x∈X

p(x|θ̃) log p(y|z, θ2) , (11)

since the normalization terms ZDθ̃
cancel out each other.

The problem then reduces to finding a functional form for h(x, θ).

Proposition 2.2 From axiom 3. it follows that

log h(x, θ) = fC(log p(y|z, θ)) (12)

where fC is a monotonically increasing function.

Proof In the appendix.

Furthermore, utilizing both the equality part and the inequality part of axiom 3. we can
derive the following proposition

Proposition 2.3 For a continuous increasing function fC(t) for which

log h(x, θ) = fC (log p(y|z, θ))

it follows from axiom 3. that
fC(t) = At+ β ,

or, equivalently,
h(x, θ) = exp(β) p(y|z, θ)A with A > 0. (13)

Proof In the appendix.

To restrict ourselves further, we set a fourth axiom, which in effect states that our choice
of utility function coincides with the posterior probability if the correct model is within the
model family.

4. When the true θ̃ belongs to the model family and the prior distribution is even (i.e.
p(θ) = const.) on the simplex: θ̃i ∈ [0, 1],

∑
i θ̃i = 1, for each fixed z the

posterior distributions g(θ̃ | D, z) and p(θ̃ | D, z) are equal.

From this axiom we can derive the following proposition
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Proposition 2.4 From axiom 4. it follows that A = 1 in (13), which means that

h(x, θ) = exp(β) p(y|z, θ)
with constant β.

Proof In the appendix.

Finally, requiring such normalization that{
inf h(x, θ) = 0
suph(x, θ) = 1

is equivalent to requiring that exp(β) = 1 =⇒ β = 0.

So, with this normalization, we get

h(x, θ) = p(y | z, θ) (14)
for all possible values of x = (y, z) and for all parameter values θ. �

3 Practice

For point estimates it is known that for the same model structure, in case of an incor-
rect model, the maximum joint likelihood estimate differs from the conditional likelihood
estimate. Algorithms for obtaining point estimates have included gradient ascent-based
methods or discriminative versions of the EM algorithm.

So far, MCMC methods have been used for sampling from the posterior of a joint density
model, thus making the implicit assumption that the model is very close to being correct.
However, as shown in Section 2, in case of an incorrect model, a discriminative posterior,
at least asymptoticallly, gives better predictions.

In the following, we discuss discriminative MCMC sampling in the case of predicting the
value c of a class variable C, given observations x. We denote the set of paired observations
by D = {xi, ci}N

i=1 in the following.

We assume that the discriminative posterior pd(θ|D) is

pd(θ|D) ∝
N∏

i=1

p(ci|xi, θ)p(θ). (15)

The conditional probability in Eq. (15) can be derived from a joint density model using the
Bayes formula:

N∏
i=1

p(ci|xi, θ) =
N∏

i=1

p(ci,xi|θ)∑
c′ p(c′,xi|θ)

. (16)

The above equations can be used for implementing a Metropolis-Hastings (M-H) sampling
scheme.

Example: Mixture Model. As a simple example, we apply the discriminative posterior
to obtain predictions from a discriminative joint density mixture model. A discriminative
version of a joint density model can be obtained by changing the objective function to
conditional likelihood. Consider the likelihood of an ordinary joint density mixture model,∏

i

∑
j

p(xi|j, θj)π(j), (17)
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where π(j) is the prior probability of selecting the component j, and p(xi|j, θj) is the
probability distribution of data x, given the component j and the associated parameters θj .
When given pairwise data (x, c)i, it is common to assume a deterministic mapping from c
to mixture component(s) j. In other words, a subset Cc of values of j is associated with the
given class label c. In the simplest case, with one component per class, the task is trivial,
since the class label gives us directly the component. The task for test data is then, given
x, to predict the component that generated the data.

A discriminative version of a joint density model can be obtained by switching to condi-
tional likelihood

∏
i

p(ci|xi, θ) =
∏

i

∏
Cc

(∑
j∈Cc

p(xi|j, θj)π(j)
)δ(ci,Cc)∑

j′ p(xi|j′, θj′)π(j′)
. (18)

The delta function in the exponent picks the components associated with the class ci of the
sample i. Equation (18) is plugged in to Eq. (15) to obtain M-H acceptance probabilities.

An alternative way would be to define a mixture model∏
i

p(xi, ci|θ, ψ) =
∏

i

∑
j

p(xi|j, θj)p(ci|j, ψj)π(j). (19)

In this case the mixture component assigns a (multinomial) probability distribution over
class labels, p(c|j, ψj). The corresponding conditional likelihood is then∏

i

p(ci|xi, θ, ψ) =
∏

i

∑
j p(xi|j, θj)p(ci|j, ψj)π(j)∑

j′ p(xi|j′, θj′)π(j′)
. (20)

3.1 Convergence of sampling from discriminative posterior

According to [6], in order to be valid, the MCMC sampling has to fulfill these conditions:

1. Simulated sequence is a Markov chain with unique stationary distribution.

2. The stationary distribution equals the discriminative posterior.

The conditions can be shown to hold in a similar manner as for joint likelihood sam-
pling [6].

Condition 1. A Markov chain has a unique stationary distribution, when the chain is
irreducible, aperiodic, and not transient. A random walk on any proper distribution is
aperiodic and not transient [6].

The dMCMC chain is irreducible (=ergodic), since every value of θ has a non-zero proba-
bility of being sampled. The jumping distribution Jt must thus eventually be able to jump
to any state with positive probability.

We may thus conclude that the Markov chain has a unique stationary distribution.

Condition 2. Assume that the sample θt−1 at time t − 1 is drawn from the target distri-
bution pd(θ|D). We further assume a labeling of samples such that

pd(θb|D)Jt(θa|θb) ≥ pd(θa|D)Jt(θb|θa) .

The joint probability of a transition is now

p(θt = θb, θ
t−1 = θa) = pd(θa|D)Jt(θb|θa) · r = pd(θa|D)Jt(θb|θa) , (21)

7



where r is the M-H probability, r = min
(

pd(θb|D)Jt(θa|θb)
pd(θa|D)Jt(θb|θa) , 1

)
. Due to our labeling, we

have r = 1.

On the other hand,

p(θt = θa, θ
t−1 = θb) = pd(θb|D)Jt(θa|θb) · r = pd(θa|D)Jt(θb|θa) , (22)

where r = min
(

pd(θa|D)Jt(θb|θa)
pd(θb|D)Jt(θa|θb)

, 1
)
. Due to our labeling, we have r = pd(θa|D)Jt(θb|θa)

pd(θb|D)Jt(θa|θb)
.

Since Eq. (21)= Eq. (22), the joint distribution is symmetric. The θt−1, θt thus have same
marginal distributions, and so pd(θ|D) is the stationary distribution of the Markov chain of
θ.

3.2 Predictions from discriminative posterior

Predictions for test data are obtained by

p(c|x) ≈ 1
K

K∑
k=1

p(c|θ(k), x), (23)

where K is the number of MCMC samples.

4 Experiments

4.1 Toy example

In order to demonstrate the difference between joint density sampling and discriminative
sampling, we constructed a simple example using a mixture of two 1-dimensional Gaus-
sians. The model is defined by

p(x) =
∑

j

π(j)p(x|µj , σj)
∏
j

p(µj |m, s), (24)

where π(j) is the mixing parameter, in this example fixed to 0.5. The distribution
p(x|µj , σj) is a Gaussian with mean µj and standard deviation σj . The p(µj |m, s) is
a Gaussian prior for µj , having hyperparameters m = 7, s = 7. The hyperparameters
were fixed in this experiment. The index j runs over the mixture components, in our case
j ∈ {1, 2}.

Toy data were generated from the mixture model using µ1 = 5, µ2 = 9, and σ1 = σ2 = 2.
The data were then labeled according to the generating mixture component j.

The task is to predict the mixture component responsible for generating the data, i.e., the
label of the data. In this demonstration we deliberately choose an incorrect model, where
the standard deviation is restricted to be the same as the mean, that is, σj = µj .

4.1.1 Sampling

The Metropolis-Hastings sampling scheme was adopted. We implemented two sampling
methods: sampling from the standard posterior and from the supervised posterior. The
methods were implemented to be as similar as possible; the only difference is in the
sample selection criteria. Both methods used the same symmetric proposal distribution
q(µ(new)|µ(old)), namely a Gaussian N (µ(old), 0.3), centered around the old parameter
value µ(old) (and with a standard deviation of 0.3). The difference is in the M-H step where
the samples are selected according to the joint likelihood or conditional likelihood criterion.
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M-H for joint density sampling The basic principle for computing with mixture mod-
els is to introduce unobserved indicators ζ, random variables which specify the mixture
component from which each particular observation is drawn [6]. M-H sampling from a
joint density mixture model is straightforward, since for training data we know the iden-
tity (label) of the generating component, that is, the values of ζ. Since the likelihood
of the other components is zero, we therefore sample from the augmented joint density
p(θ|x, c) ∼ p(x, δ(j, c), θ), where δ(·) picks the mixture component corresponding to value
C = c. Notice that also a variant using Gibbs sampling can be applied [6], however we
restrict our sampling to M-H in order to have as similar a sampling as in the discriminative
MCMC case.

1. Draw a proposal sample µ(new) ∼ N (µ(old), 0.3)

2. Accept sample with probability r ∼ min

{
1,

Q
i

Q
j

“
π(j)p(xi|µ(new)

j )
”δ(j,ci)

p(µ
(new)
j |m,s)Q

i

Q
j

“
π(j)p(xi|µ(old)

j )
”δ(j,ci)

p(µ
(old)
j |m,s)

}

M-H for conditional density sampling In case of discriminative MCMC, the M-H ac-
ceptance probability is the resulting conditional likelihood of the data.

1. Draw a proposal sample µ(new) ∼ N (µ(old), 0.3)

2. Accept sample with probability r ∼ min

{
1,

Q
i

Q
j

“
p(j|xi,µ

(new)
j )

”δ(j,ci)
p(µ

(new)
j |m,s)Q

i

Q
j

“
p(j|xi,µ

(old)
j )

”δ(j,ci)
p(µ

(old)
j |m,s)

}
,

where p(j|xi, µj) = π(j)p(xi|µj)P
j π(j)p(xi|µj)

.

4.1.2 Results

In the experiments, the training data set size was varied in NTr ∈
{2, 4, 6, 8, 10, 12, 14, 16, 20, 30, 100}; the test data set was always 200 samples. For
each size of training data, 1000 test and training data sets were generated. MCMC
sampling was carried out for each data set for 2000 iterations, with 400 samples as a
burn-in period length. After burn-in, every fifth sample was selected. After sampling, the
perplexity of the test data set was computed using the retained samples.

Figure 1 shows that the distributions produced by the two sampling methods are different.
The joint density sampling concentrates on the area of the support of the data (not visible
in the Figure), whereas discriminative sampling obtains parameters outside of the space
spanned by data.

For each size of training data sets, 1000 training and test data sets were generated. The
number of times the discriminative sampling outperformed the joint density sampling is
reported in Fig. 2

In the final experiment, we compared the performance of the MCMC sampling methods in
a case where the model is incorrect vs. when the model is correct. The results are shown
in Figure 3. In case of an incorrect model the discriminative sampling outperforms joint
density sampling, whereas in case of a correct model the performance of both methods are
roughly equal with discriminative sampling being slightly worse for small data sets.
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Figure 1: MCMC sampling in the case of an incorrect model. Left: MCMC samples,
plotted by µ1 (horizontal axis) against µ2 (vertical). ’x’ – samples from discriminative
sampling, ’o’ – samples from joint likelihood sampling. The number of data points in the
learning set was 30. Right: Plot of conditional density p(c|x) (vertical axis) as a function
of the value of x (horizontal axis). Solid line: joint likelihood sampling, Dashed: discrimi-
native sampling, dotted: true conditional density. True values were µ1 = 5, µ2 = 9.
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Figure 2: The number of times (out of a total of 1000) that a discriminative sampling
method resulted in better perplexity than joint likelihood sampling for a test data set, plotted
as a function of training set size.
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Figure 3: Difference of discriminative vs. joint density sampling when (left) the data was
modeled with an incorrect model, or (right) the correct model was used. Difference be-
tween perplexities was computed for 1000 different test sets, with models learned for 1000
separate training sets. When the difference is positive, discriminative method is better. The
sample size of the training set was varied by NTr ∈ {2, 4, 6, 8, 10, 12, 14, 16, 20, 30, 100}
(x-axis). The plot shows the median difference (solid line) between the test set perplexities,
along with 25% and 75% fractiles (dashed lines), and 10% and 90% fractiles (dotted lines).

4.2 Discriminative document modeling

As a practical application we consider the task of predicting the category of a given docu-
ment. We used the Reuters data set [7], of which we selected a subset of 400 documents
from four categories, 100 from each category. The categories were:

1. CCAT: Corporate-Industrial

2. ECAT: Economics and Economic Indicators

3. GCAT: Government and Social

4. MCAT: Securities and Commodities Trading and Markets

The selected documents were each classified to only one of the four classes. The words
that occurred less than 10 times in the whole subset were left out, thus leaving 2144 words.
The data set was then split into equal-sized training and test sets.

4.2.1 Mixture of Unigrams Model

We apply the mixture of unigrams model (MUM) in our experiments. The MUM [8] is a
hidden variable model that generates word counts for documents. The model assumes that
each document is generated from a mixture of M hidden “topics,”

∑M
j=1 π(j)p(xi|βj),

where j is the index of the topic, and βj the multinomial parameters that generate words
from the topic. The vector xi is the observed word counts for document i, and π(j) the
probability of generating the words from the topic j. Notice that the model is clearly
incorrect, since it places unrealistic assumptions on the documents; it assumes that each
document is generated from only one topic.

The full joint density of the MUM is

p(Dx, α, π|γ, β1...J) =
∏

i

∑
j

p(xi|αj)π(j)

∏
j

p(αj |β)p(π|γ) , (25)
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where Dx = {xi}N
i=1 is the data. We assume a uniform prior for β, γ. The generating

process of the MUM is

• Draw the component probabilities from a Dirichlet, π ∼ p(π|γ).
• For each component j: Draw word probabilities αj from a Dirichlet p(αj |β).

• For each document i:

– Draw a sample vector ζi from Multin(1, π) (i.e., pick one component).
– Draw the document vector xi from Multin(ni, αδ(ζi,1)).

We assume here that the number of words ni in a document i is given. We indicate the
sampled component using a vector ζi, consisting of zeros and a one at ζij .

The usual appproach for modeling paired data {xi, ci}N
i=1 by a joint density mixture model

is to associate c with the label of a mixture component from which the data is assumed to
be generated. In its simplest form the discriminative version of MUM thus contains one
topic vector per class (and thus, for teaching data, the component that generated that data
is known). When the number of components per class grows we modify our model to

p(Dx, α, π|γ, β1...J) =
∏

i

∑
j

p(xi|αj)π(j)

∏
c

∏
j∈Cc

p(αj |βc)p(π|γ) , (26)

that is, we have a different prior βc for components within each class, c ∈ {1 . . . C}.

4.2.2 Joint likelihood MCMC for a mixture of unigrams model

We next consider joint density MCMC sampling for the simple case of a multinomial mix-
ture model. We implement the Gibbs sampling scheme presented in [6]. In sampling step
1 we form a Jensen lower bound of the posterior of the mixture model:∑

j

π(j)p(xi|βj) ≥
∏

i

(π(j)p(xi|βj))
zij , (27)

where zij is the posterior probability p(j|xi, α) of the data xi being generated from com-
ponent j. The lower bound approximation makes the model parameters separable so that β
and π can be drawn by Gibbs sampling. For the case of MUM, Gibbs sampling will then
proceed as follows:

• Compute zij = π(j)p(x(i)|αj)P
j′ π(j′)p(x(i)|αj′ )

• Draw ζi ∼ Multin(1, zi)

• Draw αj ∼
∏

i p(x(i)|αj)δ(ζij ,ci)p(αj |βj) = Dirichlet (βj +
∑

i δ(ζij , ci)xi)

• Draw π ∼
∏

i π(j)δ(ζij ,ci)p(π|γ) = Dirichlet(γ +
∑

i δ(ζij , ci)ζi).

• Draw proposal βc,new ∼ N (βc,old, σβ), accept with M-H probability

min
(Q

j∈Cc
p(αj |βc,new)q(βold|βnew)Q

j∈Cc
p(αj |βc,old)q(βnew|βold) , 1

)
.

• Draw proposal γnew ∼ N (γold, σγ), accept with M-H probability

min
(

p(π|γnew)q(γold|γnew)
p(π|γold)q(γnew|γold) , 1

)
,

where q(βnew|βold), q(γold|γnew) are proposal kernels for β, γ, respectively. In the ex-
periments we applied a Gaussian proposal kernel, which is symmetric and thus cancels out
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from M-H acceptance probabilities. In case of several components per class the delta func-
tion δ(ζij , ci) picks those data items i where the mapping from the sampled component j
to a corresponding class label (j ∈ Cc) is correct.

It is feasible to choose one of the classes to be known explicitly (i.e., we do not sample ζ
for those samples). All those samples that have δ(ζij , ci) = 0 (that is, we have sampled
an incorrect component for the sample) are then assumed to belong to that one class. The
associated hypothesis is that the classes cannot be separated, and will thus be pooled into
one large class. This alternative, however, was not applied.

After sampling, class predictions for new data can be obtained by

Ep(θ|D) {c} =
∫
p(c|x, θ)p(θ|D)dθ ≈ 1

K

K∑
i=1

p(c,x|θ(k))∑
c p(c,x|θ(k))

, (28)

where K is the number of samples from posterior and θ(k) is the posterior sample of pa-
rameters at sampling iteration k.

4.2.3 Discriminative MCMC for a mixture of unigrams model

Not all samples obtained from the posterior of the joint model are optimal for averaging
over p(c|x). This happens in the case where our model is incorrect.

Discriminative sampling from p(θ|D) needs to be carried out using Metropolis-Hastings
(M-H) algorithm, since unlike the joint MCMC case, a Jensen lower bound approximation
is now not available. In the M-H algorithm, we assume that the discriminative posterior (15)
is

p(θ|D) ∝
N∏

i=1

p(ci|xi, α1...j , π)
M∏

j=1

p(αj |βj)p(βj)p(π|γ)p(γ) , (29)

where

p(ci|xi, α1...j , π) =

∏
Cc

(∑
j∈Cc

π(j)p(xi|αj)
)δ(ci,Cc)∑

j′ π(j′)p(xi|αj′)
. (30)

Here Cc denotes the states associated with the class c. The delta function at the exponent
thus picks the components associated with the class ci of the sample i.

For the case of the mixture of unigrams model, the discriminative M-H sampling then
proceeds as follows:

1. For each αj : Draw a proposal αnew, accept with probability

min
(Q

i p(ci,α
new
j |β,α,xi)q(α

old
j |αnew

j )Q
i p(ci,αold

j |β,α,xi)q(αnew
j |αold

j )
, 1
)
.

2. Draw a proposal πnew, accept with probability
min

(Q
i p(ci,π

new|γ,xi)q(π
old|πnew)Q

i p(ci,πold|γ,xi)q(πnew|πold)
, 1
)
.

3. For each γj : Draw γ(new) ∼ Gauss(γ(old), σ2
γ), such that γ(new) ∈ [0.01, 9.99].

Accept with probability min(p(π|γnew)
p(π|γold)

, 1).

4. For each βij : Draw β(new) ∼ Gauss(β(old), σ2
β), such that β(new) ∈ [0.01, 9.99].

Accept with probability min(p(α|βnew)
p(α|βold)

, 1).

The M-H acceptance probabilities above result from canceling the common terms in the
numerator and denominator, both formed using Eq. (29).
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Class predictions for test data are obtained by

p(c|x) ≈ 1
K

∑
k

p(c|θ(k),x), (31)

and using Equation (30).

4.2.4 Proposal (Jump) distribution

Notice that the proposal distributions in the above formulas may be of any form. In case
of an incorrect model it is typical that the model parameters of a discriminative model lie
outside of the support of the sufficient statistics of the data. This can be seen for example
in the toy data, Section 4.1. It is therefore not recommended to use a proposal distribution
using sufficient statistics of the data. The best alternative is then to draw samples around
previous sample of parameter values. In the experiments the proposal distributions are

αnew
j ∼ exp

{
N (logαold

j , 0.01)
}
− Zαj

πnew ∼ exp
{
N (log πold, 0.01)

}
− Zπ,

(32)
where Zαj

, Zπ are constants such that
∑
αnew

j = 1 and
∑
πnew = 1, respectively.

4.2.5 Including test data into sampling stage

If test data is included into the sampling process, we first need to sample the class of each
of the test data items before the M-H steps. This adds two preliminary steps to the above
sampling scheme:

1. Compute ztest
ij = π(j)p(xi|αj)P

j′ π(j′)p(xi|αj′ )
, where j = 1 . . .M.

2. Draw ctest
i ∼ Multin(1, ztest

i ).

Class predictions for test data can then be obtained directly by

p(ctest|xi) ≈
1
K

∑
k

z
test,(k)
i· . (33)

4.3 Results

For discriminative MCMC, the Metropolis-Hastings sampler was run for 4100 iterations,
with 100 burn-in iterations. After burn-in, every 80th sample was retained. Discriminative
sampling was initiated from the maximum conditional likelihood point estimate.

Joint MCMC was implemented as a Gibbs sampler, run for 210 iterations. The burn-in was
10 iterations. After burn-in every 4th sample was retained. Sampling was initiated from
the maximum likelihood estimate of a naive Bayes model.

We measure the model performance in terms of perplexity,

perplexity = e−
L
N , where L =

N∑
i=1

log p(ci|xi) .

Here p(ci|xi) is the MCMC prediction, andN is the size of the test set. The perplexities are
reported in Table 1. Judging from the results, we can conclude that the MCMC sampling
works. Notice that with 1 component per class the mixture of unigrams model corresponds
to a logistic regression model where the parameter space is constrained [9]. The model
thus has one global maximum which seems to perform fairly well for test data. However,
in the multi-component case the point estimate clearly overfits whereas the MCMC avoids
this problem, as expected.
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Table 1: Classification accuracies for discriminative pLSI (d-pLSI) and naive Bayes classi-
fier for a test set of 200 documents from four different classes.

Method Perplexity
point estimate, 1 component/class 2.94
point estimate, 5 components/class 3.96
joint MCMC, 1 component/class 4.55
joint MCMC, 5 components/class 4.45
discriminative MCMC, 1 component/class 3.52
discriminative MCMC, 5 components/class 1.95

5 Discussion

The discriminative posterior makes it possible to take generative modeling of x into ac-
count in conditional modeling of y|x. In many applications “unlabeled” samples of x are
common whereas obtaining labeled samples, pairs (x, y) is costly. The problem of using
the unlabeled samples in a discriminative task has been coined semisupervised learning.
The next question is whether the unlabeled samples could be useful in connection with the
discriminative posterior. Hansen [10] has given a Bayesian treatment of semisupervised
learning; in our future work we will study in detail whether the discriminative posterior
could be embedded in this idea.
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[9] Jarkko Salojärvi, Kai Puolamäki, and Samuel Kaski. On discriminative joint density
modeling. In João Gama, Rui Camacho, Pavel Brazdil, Alı́pio Jorge, and Luı́s Torgo,

15



editors, Machine Learning: ECML 2005, Lecture Notes in Artificial Intellligence
3720, pages 341–352, Berlin, Germany, 2005. Springer-Verlag.

[10] Lars Kai Hansen. How useful are unlabeled examples for supervised learning? Un-
published manuscript, March 2002.

16



A Appendix: Proofs

A.1 Mapping from p(y |, z, θ) to h(x, θ) is monotonically increasing

Proposition A.1 From axiom 3. it follows that

log h(x, θ) = fC(log p(y|z, θ)) (34)

where fC is a monotonically increasing function.

Proof Denoting θ̃x = p(x|θ̃) in inequalities (10) and (11) we can write in the following
form

∑
x∈X

θ̃x log h(x, θ1) ≤
∑
x∈X

θ̃x log h(x, θ2) (35)

m

∑
x∈X

θ̃x log p(y|z, θ1) ≤
∑
x∈X

θ̃x log p(y|z, θ2) . (36)

Consider the points in the parameter space Θ, where θ̃k = 1 and θ̃i = 0 for i 6= k (“corner
points”). In these points the linear combinations vanish and the equivalent inequalities (35)
and (36) become



log h(xk, θ1) ≤ log h(xk, θ2)

m

log p(yk|zk, θ1) ≤ log p(yk|zk, θ2) ,

. (37)

Since the functional form of fC must be the same regardless of the choice of θ̃, equivalence
(37) holds everywhere in the parameter space, not just in the corners.

From the equivalence (37) (and the symmetry of the models with respect of re-labeling the
data items) it follows that h(x, θ) must be of the form

log h(x, θ) = fC(log p(y|z, θ))

where fC is a monotonically increasing function. �
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A.2 Mapping is of form h(x, θ) = c p(y | z, θ)A

Proposition A.2 For a continuous increasing function fC(t) for which

log h(x, θ) = fC (log p(y|z, θ))

it follows from axiom 3. that
fC(t) = At+ β ,

or, equivalently,
h(x, θ) = exp(β) p(y|z, θ)A with A > 0. (38)

Proof Consider any θ̃, and the set of points θ that satisfy R(θ̃, θ) = t, where t is some
constant. From the last axiom (the equality part) it follows that there must exist a constant
fθ̃(t) that defines the same set of points θ, defined by

∑
x∈X p(x|θ̃) log h(x, θ) = fθ̃(t).

From the inequality part of the same axiom it follows that fθ̃ is a monotonically increasing
function. Hence,∑

x∈X

p(x|θ̃) log h(x, θ) = fθ̃

(∑
x∈X

p(x|θ̃) log p(y|z, θ)

)
. (39)

On the other hand, from (12) we know that we can write

log h(x, θ) = fC (log p(y|z, θ)) . (40)

So, (39) and (40) lead to

fθ̃

(∑
x∈X

p(x|θ̃) log p(y|z, θ)

)
=
∑
x∈X

p(x|θ̃)fC (log p(y|z, θ)) . (41)

If we make a variable change ui = log p(yi | zi, θ) and denote p(xi|θ̃) = θ̃i for short
equation (41) becomes

fθ̃

(∑
i

θ̃i ui

)
=
∑

i

θ̃i fC (ui) . (42)

Not all ui are independent, however: for each fixed z, one of the variables ul is determined
by the other ui’s

exp(ui) = p(yi | zi, θ) ,

and ∑
fixed z

p(yi | z, θ) = 1 ⇔
∑

fixed z

exp(ui) = 1 .

So the last ul for each z is

ul = log

1−
∑

fixed z
indep. um

exp(um)

 , (43)

where the sum only includes the independent varibles um for the fixed z.
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This way we can make the dependency on each ui explicit in equation (42):

fθ̃

 ∑
indep. uj

θ̃j uj +
∑

dependent ul

θ̃l log

1−
∑

fixed z
indep. um

exp(um)




=
∑

indep. uj

θ̃j fC(uj) +
∑

dependent ul

θ̃l fC

log

1−
∑

fixed z
indep. um

exp(um)


 . (44)

Let us differentiate both sides with respect to a uk:

f ′
θ̃

(∑
i

θ̃i ui

)
︸ ︷︷ ︸

α

θ̃k −
θ̃l

ul︸︷︷︸
cz

exp(uk)


= θ̃k f

′
C(uk)− θ̃l

ul︸︷︷︸
cz

f ′C(ul)︸ ︷︷ ︸
dz

exp(uk) . (45)

For all such variables uk that share the same z, we get

α
[
θ̃k − cz exp(uk)

]
= θ̃k f

′
C(uk)− cz dz exp(uk)

m

θ̃k exp(−uk) (f ′C(uk)− α) = cz (dz − α) .

Since the right-hand side only depends on z, not on individual uk, the left-hand side must
also only depend on z and the factors depending on uk must cancel out.

f ′C(uk)− α = Bz
exp(uk)
θ̃k

m

f ′
θ̃

(∑
i

θ̃i ui

)
︸ ︷︷ ︸

does not depend on uk

= f ′C(uk)−Bz
exp(uk)
θ̃k︸ ︷︷ ︸

depends on uk

.

Since the left-hand side depends neither on uk nor z, both sides must be constant

=⇒ f ′
θ̃
(t) = A

=⇒ fθ̃(t) = A t+ β . (46)
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Subsituting (46) to (41) we get

A fθ̃

(∑
i

θ̃i ui

)
+ β =

∑
i

θ̃i fC(ui)

m∑
i

θ̃i (A ui − fC(ui)) = −β ,

and since this must hold for any parameters θ̃, it must also hold for the corner points:

A ui − fC(ui) = −β

=⇒ fC(t) = A t+ β . (47)

�

A.3 Axiom 4. implies exponent A = 1

Proposition A.3 From axiom 4. it follows that A = 1 in (13), which means that

h(x, θ) = exp(β) p(y|z, θ) (48)

with constant β.

Proof Let us first write down an expression for g(θ̃ | D, z):

g(θ̃ | D, z) =
p(θ̃)
Zh

|Dz|∏
j=1

h(xj , θ̃) =
p(θ̃)
Zh

∏
x∈Xz

p(yj | z, θ̃)A nx , (49)

where
Xz = {xj = (yj , zj) | zj = z} .

Now the data set that contributes to the posterior with fixed z is

Dz = {xj ∈ D | zj = z} .

Taking logarithms on both sides of equation (49) yields

log g(θ̃ | D, z) = log p(θ̃)− logZh + |Dz|
∑

x∈Xz
A nx

|Dz| log p(yj | z, θ̃)
= log p(θ̃)− logZh +A |Dz|

∑
x∈Xz

p(y | θ̃, z) log h(x, θ̃) ,
(50)

where

Zh = c︸︷︷︸
p(θ̃)

[∫
θ

∏
x∈Xz

p(yj | z, θ)A nx dθ

]
.

Whereas for the posterior p(θ̃ | D, z) we get

p(θ̃ | D, z) =
p(θ̃)
Zp

|Dz|∏
j=1

p(yj | z, θ̃) =
p(θ̃)
Zp

∏
x∈Xz

p(y | z, θ̃)nx . (51)
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Again, taking logarithms on both sides yields

log p(θ̃ | D, z) = log p(θ̃)− logZp + |Dz|
∑

x∈Xz

nx

|Dz| log p(y | z, θ̃)
= log p(θ̃)− logZp + |Dz|

∑
x∈Xz

p(y | θ̃, z) log p(y | z, θ̃) ,
(52)

where

Zp = c︸︷︷︸
p(θ̃)

[∫
θ

∏
x∈Xz

p(yj | z, θ)nx dθ

]
.

Let us now demand that expressions (50) and (52) are equal for a fixed z as it says in
axiom 4.

log p(θ̃)− logZh +A |Dz|
∑

x∈Xz
p(y | θ̃, z) log p(y | z, θ̃)

= log p(θ̃)− logZp + |Dz|
∑

x∈Xz
p(y | θ̃, z) log p(y | z, θ̃)

m

(A− 1)
∑

x∈Xz

p(y | θ̃, z) log p(y | z, θ̃)︸ ︷︷ ︸
depends on θ̃

=
1
|Dz|

log
(
Zh

Zp

)
︸ ︷︷ ︸
does not depend on θ̃

.

(53)

Note that the right-hand side does not depend on the parameters θ̃, only in the data set D
and the functional forms of h and p. On the left-hand side we have an entropy that does
depend on θ̃. From this it follows that both sides equal to zero, resulting in A = 1. Let us
substitute the formula of fC into equation (40)

log h(x, θ) = fC(log p(y | z, θ)) = A log p(y | z, θ) + β = log p(y | z, θ) + β . (54)

Taking exponentials on both sides gives

h(x, θ) = exp(β)p(y | z, θ) . (55)

�
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