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Exercise 4

1. Let the error function be
E(w) = w2

1 + 10w2
2,

where w1 and w2 are the components of the two-dimensional parameter vectorw. Find the minimum
value of E(w) by applying the steepest descent method. Use w(0) = [1, 1]T as an initial value for
the parameter vector and the following constant values for the learning rate:

(a) α = 0.04

(b) α = 0.1

(c) α = 0.2

(d) What is the condition for the convergence of this method?

2. Show that the application of the Gauss-Newton method to the error function

E(w) =
1
2

[
δ‖w −w(n)‖2 +

n∑
i=1

e2
i (w)

]

yields the the following update rule for the weights:

∆w = −
[
JT (w)J(w) + δI

]−1
JT (w)e(w).

All quantities are evaluated at iteration step n. (Haykin 3.3)

3. The normalized LMS algorithm is described by the following recursion for the weight vector:

ŵ(n + 1) = ŵ(n) +
ηe(n)x(n)
‖x(n)‖2

,

where η is a positive constant and ‖x(n)‖ is the Euclidean norm of the input vector x(n). The error
signal e(n) is de�ned by

e(n) = d(n)− ŵ(n)T x(n),

where d(n) is the desired response. For the normalized LMS algorithm to be convergent in the
mean square, show that 0 < η < 2. (Haykin 3.5)

4. The ensemble-averaged counterpart to the sum of error squares viewed as a cost function is the
mean-square value of the error signal:

J(w) =
1
2
E[e2(n)] =

1
2
E[(d(n)− xT (n)w)2].

(a) Assuming that the input vector x(n) and desired response d(n) are drawn from a stationary
environment, show that

J(w) =
1
2
σ2

d − rT
xdw +

1
2
wT Rxw,

where σ2
d = E[d2(n)], rxd = E[x(n)d(n)], and Rx = E[x(n)xT (n)].

(b) For this cost function, show that the gradient vector and Hessian matrix of J(w) are as follows,
respectively:

g = −rxd + Rxw and

H = Rx.



(c) In the LMS/Newton algorithm, the gradient vector g is replaced by its instantaneous value.
Show that this algorithm, incorporating a learning rate parameter η, is described by

ŵ(n + 1) = ŵ(n) + ηR−1
x x(n)

[
d(n)− xT (n)ŵ(n)

]
.

The inverse of the correlation matrix Rx, assumed to be positive de�nite, is calculated ahead
of time. (Haykin 3.8)

5. A linear classi�er separates n-dimensional space into two classes using a (n−1)-dimensional hyper-
plane. Points are classi�ed into two classes, ω1 or ω2, depending on which side of the hyperplane
they are located.

(a) Construct a linear classi�er which is able to separate the following two-dimensional samples
correctly:

ω1 : {[2, 1]T },
ω2 : {[0, 1]T , [−1, 1]T }.

(b) Is it possible to construct a linear classi�er which is able to separate the following samples
correctly?

ω1 : {[2, 1]T , [3, 2]T },
ω2 : {[3, 1]T , [2, 2]T }

Justify your answer.


