Tik-61.3030 Principles of Neural Computing

Raivio, Venna

Exercise 4
1. Let the error function be
E(w) = wi + 10w3,

where wy and ws are the components of the two-dimensional parameter vector w. Find the minimum
value of £(w) by applying the steepest descent method. Use w(0) = [1,1]7 as an initial value for
the parameter vector and the following constant values for the learning rate:

(a
(b

(c
(d

a=0.04
a=0.1
a=0.2

What is the condition for the convergence of this method?
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2. Show that the application of the Gauss-Newton method to the error function

E(w) =

1 n
5 |0llw = wm)[* + > ef(w)
i=1

yields the the following update rule for the weights:
Aw = — [T (w)I(w) + 61) " 37 (w)e(w).

All quantities are evaluated at iteration step n. (Haykin 3.3)

3. The normalized LMS algorithm is described by the following recursion for the weight vector:

ne(n)x(n)

w(n+1)=w(n)+ 7||x(n)|\2 )

where 7 is a positive constant and ||x(n)|| is the Euclidean norm of the input vector x(n). The error
signal e(n) is defined by
e(n) = d(n) = w(n)" x(n),

where d(n) is the desired response. For the normalized LMS algorithm to be convergent in the
mean square, show that 0 < n < 2. (Haykin 3.5)

4. The ensemble-averaged counterpart to the sum of error squares viewed as a cost function is the
mean-square value of the error signal:

J(w) = 3Ele*(n)] = 3El(d(n) X (n)w)’].

(a) Assuming that the input vector x(n) and desired response d(n) are drawn from a stationary
environment, show that

1 1
J(w) = 502 —rlw+ inRxw,

where 0% = E[d?(n)], rxq = E[x(n)d(n)], and Rx = E[x(n)xT (n)].
(b) For this cost function, show that the gradient vector and Hessian matrix of J(w) are as follows,
respectively:

g = —ryxq + Rxw and
H=R,.



(c¢) In the LMS/Newton algorithm, the gradient vector g is replaced by its instantaneous value.
Show that this algorithm, incorporating a learning rate parameter 7, is described by

w(n +1) = w(n) +nRg'x(n) [d(n) — xT(n)vAv(n)} .
The inverse of the correlation matrix Ry, assumed to be positive definite, is calculated ahead

of time. (Haykin 3.8)

5. A linear classifier separates n-dimensional space into two classes using a (n — 1)-dimensional hyper-
plane. Points are classified into two classes, w; or ws, depending on which side of the hyperplane
they are located.

(a) Construct a linear classifier which is able to separate the following two-dimensional samples
correctly:

w1 {[2’ l]T}7
wo : {[0, 17, [-1,1]7}.

(b) Is it possible to construct a linear classifier which is able to separate the following samples
correctly?

Justify your answer.



