Tik-61.3030 Principles of Neural Computing

Raivio, Venna

Exercise 12

1. It is sometimes said that the SOM algorithm preserves the topological relationships that exist in
the input space. Strictly speaking, this property can be guaranteed only for an input space of
equal or lower dimensionality than that of the neural lattice. Discuss the validity of this statement.
(Haykin, Problem 9.3)

2. Tt is said that the SOM algorithm based on competitive learning lacks any tolerance against hard-
ware failure, yet the algorithm is error tolerant in that a small perturbation applied to the input
vector causes the output to jump from the winning neuron to a neighboring one. Discuss the
implications of these two statements. (Haykin, Problem 9.4)

3. In this problem we consider the optimized form of the learning vector quantization algorithm (see
Section 9.7, Haykin) developed by Kohonen. We wish to arrange for the effects of the corrections
to the Voronoi vectors, made at different times, to have equal influence when referring to the end
of the learning period.

(a) First, show that Equation (9.30)
we(n+1) =we(n) + ap[x; — we(n)]
and Equation (9.31)
we(n+1) =we(n) — ap[x; — we(n)]

may be integrated into a single equation, as follows:
we(n+1) = (1 — span)we(n) + spapx(n).

In the above equations, w. is the Voronoi vector closest to the input vector x;, 0 < a;, < 18
a learning constant, and s, is a sign function depending on the classification result of the nth
input vector x(n): s, = +1 if classification is correct, otherwise s,, = —1.

(b) Hence, show that the optimization criterion described at the beginning of the problem is

satisfied if
an = (1 — span)an—1

which yields the optimized value of the learning constant «,, as

opt
n—1

opt *
1+ spa,”4

opt __ «Q

(Haykin, Problem 9.6)

4. The following algorithm introduced by J. Friedman can be used for speeding up winner search
in the SOM algorithm: 1) Evaluate the Euclidean distance between the input vector and weight
vector whose projections on some coordinate axis are least apart, 2) Examine the weight vectors in
the increasing order of their projected distances to the input vector. Continue this until a weight
vector whose projected distance to the input vector is greater than the smallest Euclidean distance
calculated so far is found. At this point of the algorithm, the winning neuron has been found.

Apply the algorithm described above for the problem illustrated in Figure 1.

(a) Find the winning neuron when the weight vectors and the input vector are projected onto
x1-axis. Show that the weight vector found by the algorithm is indeed the winning one. How
many Euclidean distances one must evaluate for finding it?



X2

x1

Figure 1: The weight vectors (o) among which the nearest one to the input vector (x) has to be found.

(b) Repeat the search but project the vectors onto xg-axis this time.

(c) Which one of the two searches was the fastest? Are there some general rules on how the
projection axis should be chosen?



