T-61.263 Advanced course in neural computing

Solutions for exercise 9

1. (a) We start with the notion that a neuron j flips from state x_{j} to $-x_{j}$ at temperature T with probability

$$
\begin{equation*}
P\left(x_{j} \rightarrow-x_{j}\right)=\frac{1}{1+\exp \left(\Delta E_{j} / T\right)} \tag{1}
\end{equation*}
$$

where ΔE_{j} is the energy difference resulting from such a flip. Note that this agrees with the notion that in equilibrium, the probability of being in a state decreases as the energy of the state increases (see Haykin, Eq. 11.40): as a consequence of the notion, the probability of changing to a higher-energy state should decrease as the energy difference increases.
The energy function of the Boltzmann machine is defined by

$$
E=-\frac{1}{2} \sum_{i} \sum_{j} w_{i \neq j} x_{i} x_{j}
$$

where $w_{i j}=w_{j i}$. The weights $w_{i i}$ are zero. Hence the energy change produced by neuron j flipping from state x_{j} to $-x_{j}$ is

$$
\Delta E_{j}=\left(\text { energy with neuron } j \text { in state }-x_{j}\right)-\left(\text { energy with neuron } j \text { in state } x_{j}\right)
$$

$$
\begin{align*}
=-\left(-x_{j}\right) \sum_{i} w_{j i} x_{i}-\left(-\left(x_{j}\right) \sum_{i}\right. & \left.w_{j i} x_{i}\right) \\
& =2 x_{j} \sum_{i} w_{j i} x_{i}=2 x_{j} v_{j} \tag{2}
\end{align*}
$$

where v_{j} is the induced local field of neuron j. Therefore the probability is $P\left(x_{j} \rightarrow\right.$ $\left.-x_{j}\right)=1 /\left(1+\exp \left(2 x_{j} v_{j} / T\right)\right)$, which is the desired result.
(b) In light of the result in Eq.(2), we may rewrite Eq.(1) as

$$
P\left(x_{j} \rightarrow-x_{j}\right)=\frac{1}{1+\exp \left(2 x_{j} v_{j} / T\right)} .
$$

This means that for an initial state $x_{j}=-1$, the probability that neuron j is flipped into state +1 is

$$
\begin{equation*}
\frac{1}{1+\exp \left(-2 v_{j} / T\right)} \tag{3}
\end{equation*}
$$

(c) For an initial state of $x_{j}=+1$, the probability that neuron j is flipped into state -1 is

$$
\begin{equation*}
\frac{1}{1+\exp \left(+2 v_{j} / T\right)}=1-\frac{1}{1+\exp \left(-2 v_{j} / T\right)} . \tag{4}
\end{equation*}
$$

The flipping probability in Eq.(4) and the one in Eq.(3) are in perfect agreement with the following probabilistic rule:

$$
x_{j}=\left\{\begin{array}{l}
+1 \text { with probability } P\left(v_{j}\right) \\
-1 \text { with probability } 1-P\left(v_{j}\right)
\end{array}\right.
$$

where $P\left(v_{j}\right)$ is itself defined by

$$
P\left(v_{j}\right)=\frac{1}{1+\exp \left(-2 v_{j} / T\right)} .
$$

Compare to Haykin, Eq. 11.43, but note that in each of the three equations after Eq. 11.42, up to and including Eq. 11.43, the term that is divided by T should be multiplied by 2 (the multiplier is missing in the book).
2. The Boltzmann machine and sigmoid belief network share a common feature: they are both stochastic machines with their theory rooted in statistical mechanics.
They differ from each other in the following respects:

- The Boltzmann machine is a recurrent network whereas the sigmoid belief network is an acyclic feedforward network.
- The learning process in a Boltzmann machine involves two phases: one clamped (positive) and the other free running (negative). The negative phase is eliminated from the sigmoid belief network.

3. Writing the system of N simultaneous equations (Haykin, Eq. 12.22) in matrix form:

$$
\begin{equation*}
\mathbf{J}^{\mu}=\mathbf{c}(\mu)+\gamma \mathbf{P}(\mu) \mathbf{J}^{\mu} \tag{5}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathbf{J}^{\mu}=\left[J^{\mu}(1), J^{\mu}(2), \ldots, J^{\mu}(N)\right]^{T} \\
\mathbf{c}(\mu)=[c(1, \mu), c(2, \mu), \ldots, c(N, \mu)]^{T} \\
\mathbf{P}(\mu)=\left[\begin{array}{cccc}
p_{11}(\mu) & p_{12}(\mu) & \ldots & p_{1 N}(\mu) \\
p_{21}(\mu) & p_{22}(\mu) & \ldots & p_{2 N}(\mu) \\
\vdots & \vdots & & \vdots \\
p_{N 1}(\mu) & p_{N 2}(\mu) & \ldots & p_{N N}(\mu)
\end{array}\right] .
\end{gathered}
$$

Rearranging terms in Eq.(5):

$$
(\mathbf{I}-\gamma \mathbf{P}(\mu)) \mathbf{J}^{\mu}=\mathbf{c}(\mu)
$$

where \mathbf{I} is the N-by- N identity matrix. For the solution \mathbf{J}^{μ} to be unique we require that the N-by- N matrix $(\mathbf{I}-\gamma \mathbf{P}(\mu)$) has an inverse matrix for all possible values of the discount factor γ.
4. An important property of dynamic programming is the monotonicity property described by

$$
J^{\mu_{n+1}} \leq J^{\mu_{n}}
$$

We shall prove the monotonicity property for the policy iteration algorithm, based on the proof in (R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, 1998. Online version at http://www.cs.ualberta.ca/~sutton/book/the-book.html).
The cost-to-go function is defined in Haykin, Eq. 12.26 and the policy iteration at each step changes the policy by minimizing the Q-factor in Haykin, Eq. 12.27. (Note: Haykin, Eq. 12.26 and Eq. 12.27 should probably have $J^{\mu_{n}}(j)$ at right rather than $J^{\mu_{n}}(i)$.)

Writing out the cost-to-go function at iteration n, we get

$$
\begin{align*}
J^{\mu_{n}}(i) & =c\left(i, \mu_{n}(i)\right)+\gamma \sum_{j=1}^{N} p_{i j}\left(\mu_{n}(i)\right) J^{\mu_{n}}(i)=Q^{\mu_{n}}\left(i, \mu_{n}(i)\right) \\
& \left.\geq \min _{a \in A_{i}} Q^{\mu_{n}}(i, a)=Q^{\mu_{n}}\left(i, \mu_{n+1}(i)\right)\right)=c\left(i, \mu_{n+1}(i)\right)+\gamma \sum_{j=1}^{N} p_{i j}\left(\mu_{n+1}(i)\right) J^{\mu_{n}}(i) \tag{6}
\end{align*}
$$

where the second-to-last equality follows from Haykin, Eq. 12.27. The above inequality applies for all $J^{\mu_{n}}(i), i=1, \ldots, N$. We can then apply it to the term $J^{\mu_{n}}(j)$ on the right-hand side. We get:

$$
\begin{align*}
& J^{\mu_{n}}(i) \geq c\left(i, \mu_{n+1}(i)\right)+\gamma \sum_{j=1}^{N} p_{i j}\left(\mu_{n+1}(i)\right) J^{\mu_{n}}(j) \\
& \left.\geq c\left(i, \mu_{n+1}(i)\right)+\gamma \sum_{j_{1}=1}^{N} p_{i, j_{1}}\left(\mu_{n+1}(i)\right)\left[c\left(j_{1}, \mu_{n+1}\left(j_{1}\right)\right)+\sum_{j_{2}=1}^{N} p_{j_{1}, j_{2}}\left(\mu_{n+1}\left(j_{1}\right)\right) J^{\mu_{n}}\left(j_{2}\right)\right)\right] \\
& =c\left(i, \mu_{n+1}(i)\right)+\gamma \sum_{j_{1}=1}^{N} p_{i, j_{1}}\left(\mu_{n+1}(i)\right) c\left(j_{1}, \mu_{n+1}\left(j_{1}\right)\right) \\
& \quad+\gamma^{2} \sum_{j_{1}, j_{2}=1}^{N} p_{i, j_{1}}\left(\mu_{n+1}(i)\right) p_{j_{1}, j_{2}}\left(\mu_{n+1}\left(j_{1}\right)\right) J^{\mu_{n}}\left(j_{2}\right) \\
& \geq c\left(i, \mu_{n+1}(i)\right)+\gamma \sum_{j_{1}=1}^{N} p_{i, j_{1}}\left(\mu_{n+1}(i)\right) c\left(j_{1}, \mu_{n+1}\left(j_{1}\right)\right) \\
& \quad+\gamma^{2} \sum_{j_{1}, j_{2}=1}^{N} p_{i, j_{1}}\left(\mu_{n+1}(i)\right) p_{j_{1}, j_{2}}\left(\mu_{n+1}\left(j_{1}\right)\right) c\left(j_{2}, \mu_{n+1}\left(j_{2}\right)\right) \\
& \quad+\gamma^{3} \sum_{j_{1}, j_{2}, j_{3}=1}^{N} p_{i, j_{1}}\left(\mu_{n+1}(i)\right) p_{j_{1}, j_{2}}\left(\mu_{n+1}\left(j_{1}\right)\right) p_{j_{2}, j_{3}}\left(\mu_{n+1}\left(j_{2}\right)\right) J^{\mu_{n}}\left(j_{3}\right) \\
& \geq \geq\left[c\left(i, \mu_{n+1}(i)\right)\right. \\
& \left.+\sum_{t=1}^{\infty} \gamma^{t} \sum_{j_{1}, \ldots, j_{t}}^{N} p_{i, j_{1}}\left(i, \mu_{n+1}(i)\right) p_{j_{1}, j_{2}}\left(j_{1}, \mu_{n+1}\left(j_{1}\right)\right) \cdots p_{j_{t-1}, j_{t}}\left(j_{t-1}, \mu_{n+1}\left(j_{t-1}\right)\right) c\left(j_{t}, \mu_{n+1}\left(j_{t}\right)\right)\right]
\end{align*}
$$

where the term with $J^{\mu_{n}}$ disappears as the exponent of γ grows because the cost-to-go function is finite-valued for all starting states (if c is finite-valued and $\gamma<1$) and the sum before it is just an expectation. The last equality follows from the definition of the cost-to-go function (Haykin, Eq. 12.26) because the expression on the left-hand side of the equality depends only on μ_{n+1}, not μ_{n}. Since equation (7) applies for all i, we have proved the monotonicity property.

