T-61.5030 Advanced course in neural computing

Solutions for exercise 7

1. If we are not interested in the dependencies inside the groups \mathbf{X}_{1} or \mathbf{X}_{2} but are interested only on dependecies between these groups, we can use canonical correlation analysis (CCA). It means that we try to find projections from \mathbf{X}_{1} and \mathbf{X}_{2} which would be as correlated as possible. CCA uses only second-order statistics; for Gaussian variables this is sufficient but CCA can also be used for non-Gaussian variables. For a tutorial on CCA, see, e.g., the one by Magnus Borga available at http://people.imt.liu.se/~magnus/cca/ . The following is partly based on the information in that tutorial.
The correlation coefficient between zero mean random variables a and b is defined to be $\rho_{a b}=E\{a b\} / \sqrt{E\left\{a^{2}\right\} E\left\{b^{2}\right\}}$. We have projections $a_{i}=\mathbf{u}_{i}^{T} \mathbf{x}_{1}$ and $b_{i}=\mathbf{v}_{i}^{T} \mathbf{x}_{2}$ and we would like to maximise the correlations between a_{i} and b_{i}. We restrict the solutions to be uncorrelated for different i : $E\left\{a_{i} a_{j}\right\}=E\left\{b_{i} b_{j}\right\}=E\left\{a_{i} b_{j}\right\}=0$ for $i \neq j$.
For the i th projections we have

$$
\begin{aligned}
& \rho_{a_{i} b_{i}}=\frac{E\left\{\mathbf{u}_{i}^{T} \mathbf{x}_{1} \mathbf{x}_{2}^{T} \mathbf{v}_{i}\right\}}{\sqrt{E\left\{\mathbf{u}_{i}^{T} \mathbf{x}_{1} \mathbf{x}_{1}^{T} \mathbf{u}_{i}\right\} E\left\{\mathbf{v}_{i}^{T} \mathbf{x}_{2} \mathbf{x}_{2}^{T} \mathbf{v}_{i}\right\}}}=\frac{\mathbf{u}_{i}^{T} E\left\{\mathbf{x}_{1} \mathbf{x}_{2}^{T}\right\} \mathbf{v}_{i}}{\sqrt{\mathbf{u}_{i}^{T} E\left\{\mathbf{x}_{1} \mathbf{x}_{1}^{T}\right\} \mathbf{u}_{i} \mathbf{v}_{i}^{T} E\left\{\mathbf{x}_{2} \mathbf{x}_{2}^{T}\right\} \mathbf{v}_{i}}} \\
&=\frac{\mathbf{u}_{i}^{T} \boldsymbol{\Sigma}_{12} \mathbf{v}_{i}}{\sqrt{\mathbf{u}_{i}^{T} \boldsymbol{\Sigma}_{1} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \boldsymbol{\Sigma}_{2} \mathbf{v}_{i}}} .
\end{aligned}
$$

It can be shown that the maximization corresponds to solving either one of the following eigenvalue equations:

$$
\begin{aligned}
\boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\Sigma}_{12}^{T} \mathbf{u}_{i} & =\rho_{a_{i} b_{i}}^{2} \mathbf{u}_{i} \\
\boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\Sigma}_{12}^{T} \boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\Sigma}_{12} \mathbf{v}_{i} & =\rho_{a_{i} b_{i}}^{2} \mathbf{v}_{i} .
\end{aligned}
$$

Connection to singular value decomposition. Canonical correlations are invariant to affine transformations (for example, if a transformation \mathbf{A} is used for \mathbf{x}_{1}, just set $\hat{\mathbf{u}}_{i}=\mathbf{A}^{-1} \mathbf{u}_{i}$). Therefore, to simplify the situation, suppose that \mathbf{X}_{1} and \mathbf{X}_{2} have been whitened (see problem 4 for the precise transformations needed). Then $\boldsymbol{\Sigma}_{1}=\mathbf{I}$ and $\boldsymbol{\Sigma}_{2}=\mathbf{I}$. (Note that \mathbf{X}_{1} and \mathbf{X}_{2} can have different dimensionalities, so the two identity matrices can be of different sizes.) The eigenvalue equations then become

$$
\begin{equation*}
\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{12}^{T} \mathbf{u}_{i}=\rho_{a_{i} b_{i}}^{2} \mathbf{u}_{i}, \boldsymbol{\Sigma}_{12}^{T} \boldsymbol{\Sigma}_{12} \mathbf{v}_{i}=\rho_{a_{i} b_{i}}^{2} \mathbf{v}_{i} \tag{1}
\end{equation*}
$$

Solving the above equations corresponds to singular value decomposition (SVD) of $\boldsymbol{\Sigma}_{12}$. SVD is similar to eigendecomposition but the orthogonal matrices need not be the same. This also means the SVD can be extended for non-square matrices. The singular value decomposition for matrix $\boldsymbol{\Sigma}_{12}=E\left\{\mathbf{x}_{1} \mathbf{x}_{2}^{T}\right\}$ gives a decomposition $\boldsymbol{\Sigma}_{12}=\mathbf{U D V}{ }^{T}$, where \mathbf{U} and \mathbf{V} are orthogonal square matrices and \mathbf{D} is a matrix which has non-zero elements
only on its diagonal. Notice that \mathbf{D} has the same shape as $\boldsymbol{\Sigma}_{12}$ and it is therefore not necessarily square. The matrices \mathbf{U} and \mathbf{V} are computed by eigendecomposition:

$$
\boldsymbol{\Sigma}_{12}=\mathbf{U D V}^{T} \Rightarrow\left\{\begin{array}{l}
\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{12}^{T}=\mathbf{U D V}^{T} \mathbf{V D}^{T} \mathbf{U}^{T}=\mathbf{U D D}^{T} \mathbf{U}^{T} \quad \text { and } \tag{2}\\
\boldsymbol{\Sigma}_{12}^{T} \boldsymbol{\Sigma}_{12}=\mathbf{V D}^{T} \mathbf{U}^{T} \mathbf{U D V}^{T}=\mathbf{V D}^{T} \mathbf{D V}^{T}
\end{array}\right.
$$

Therefore \mathbf{U} and \mathbf{V} are the same as the solutions to the eigenvalue equations (1): $\mathbf{U}=$ $\left[\mathbf{u}_{1} \ldots \mathbf{u}_{n}\right]^{T}$ and $\mathbf{V}=\left[\mathbf{v}_{1} \ldots \mathbf{v}_{m}\right]^{T}$ and the diagonal elements of \mathbf{D} are the corresponding correlation coefficients ρ_{i}.
Note: SVD can be seen as an extension to eigendecomposition. If SVD is done for the covariance matrix $\boldsymbol{\Sigma}_{1}=E\left\{\mathbf{x}_{1} \mathbf{x}_{1}^{T}\right\}$, we have $\boldsymbol{\Sigma}_{1} \boldsymbol{\Sigma}_{1}^{T}=\boldsymbol{\Sigma}_{1}^{T} \boldsymbol{\Sigma}_{1}$ and $\mathbf{D D}^{T}=\mathbf{D}^{T} \mathbf{D}$ in equation (2), and the orthogonal matrices \mathbf{U} and \mathbf{V} are therefore the same. The diagonal matrix then contains the eigenvalues which can be interpreted as variances to the directions given by the eigenvectors. For Σ_{12} the diagonal elements give the correlation coefficients (assuming that $\boldsymbol{\Sigma}_{12}$ is computed for the whitened data).
2. (a) We shall use subindices k and l instead of i and j in order to avoid confusion with the $i=\sqrt{-1}$. Denote the Fourier transform of the sequence $x_{k}(t)$ by $X_{k}(\omega)$ and the Fourier transform of $s_{l}(t)$ by $S_{l}(\omega)$. Recall that the Fourier transform changes a delay by $D_{k l}$ into multiplication with term $e^{i \omega D_{k l}}$. Fourier transforming both sides of the equation defining the mixtures thus yields

$$
X_{k}(\omega)=\sum_{l=1}^{N} a_{k l} e^{i \omega D_{k l}} S_{l}(\omega) .
$$

This can be written as $\mathbf{X}(\omega)=\mathbf{A}(\omega) \mathbf{S}(\omega)$ when \mathbf{X} and \mathbf{S} are defined to be the vectors containing X_{k} and S_{l} and

$$
\mathbf{A}(\omega)=\left(\begin{array}{ccc}
a_{11} e^{i \omega D_{11}} & \cdots & a_{1 N} e^{i \omega D_{1 N}} \\
\vdots & \ddots & \vdots \\
a_{M 1} e^{i \omega D_{M 1}} & \cdots & a_{M N} e^{i \omega D_{M N}}
\end{array}\right) .
$$

Notice that \mathbf{A} is not constant.
(b) Since the original $a_{k l}$ are real, we have $a_{k l}= \pm\left|A_{k l}\right|$, where $A_{k l}$ denotes the element of matrix \mathbf{A}.
3. Assume that x_{1} and x_{2} are independent random variables. The kurtosis (fourth-order cumulant) of a random variable y is defined by

$$
\operatorname{kurt}(y)=E\left\{(y-E\{y\})^{4}\right\}-3\left(E\left\{(y-E\{y\})^{2}\right\}\right)^{2} .
$$

Let us prove that $\operatorname{kurt}\left(x_{1}+x_{2}\right)=\operatorname{kurt}\left(x_{1}\right)+\operatorname{kurt}\left(x_{2}\right)$. We may without loss of generality assume that x_{1} and x_{2} are zero-mean. Then the kurtosis of $x_{1}+x_{2}$ is

$$
\begin{gathered}
\operatorname{kurt}\left(x_{1}+x_{2}\right)=E\left\{\left(x_{1}+x_{2}\right)^{4}\right\}-3\left(E\left\{\left(x_{1}+x_{2}\right)^{2}\right\}\right)^{2} \\
=E\left\{x_{1}^{4}+4 x_{1}^{3} x_{2}+6 x_{1}^{2} x_{2}^{2}+4 x_{1} x_{2}^{3}+x_{2}^{4}\right\}-3\left(E\left\{x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}\right\}\right)^{2}
\end{gathered}
$$

Expectation is a linear operation, ie. $E\left\{\alpha y_{1}+\beta y_{2}\right\}=\alpha E\left\{y_{1}\right\}+\beta E\left\{y_{2}\right\}$ for random variables y_{1} and y_{2} and scalar multipliers α and β. The above formula can therefore be rewritten as

$$
\begin{aligned}
& \operatorname{kurt}\left(x_{1}+x_{2}\right)= E\left\{x_{1}^{4}\right\}+4 E\left\{x_{1}^{3} x_{2}\right\}+6 E\left\{x_{1}^{2} x_{2}^{2}\right\}+4 E\left\{x_{1} x_{2}^{3}\right\}+E\left\{x_{2}^{4}\right\} \\
&-3\left(E\left\{x_{1}^{2}\right\}+2 E\left\{x_{1} x_{2}\right\}+E\left\{x_{2}^{2}\right\}\right)^{2} \\
&=E\left\{x_{1}^{4}\right\}+ 4 E\left\{x_{1}^{3} x_{2}\right\}+6 E\left\{x_{1}^{2} x_{2}^{2}\right\}+4 E\left\{x_{1} x_{2}^{3}\right\}+E\left\{x_{2}^{4}\right\} \\
&- 3 E\left\{x_{1}^{2}\right\}^{2}-12 E\left\{x_{1}^{2}\right\} E\left\{x_{1} x_{2}\right\}-6 E\left\{x_{1}^{2}\right\} E\left\{x_{2}^{2}\right\} \\
&-12 E\left\{x_{1} x_{2}\right\}^{2}-12 E\left\{x_{1} x_{2}\right\} E\left\{x_{2}^{2}\right\}-3 E\left\{x_{2}^{2}\right\}^{2} .
\end{aligned}
$$

Since x_{1} and x_{2} are independent, $E\left\{x_{1}^{p} x_{2}^{q}\right\}=E\left\{x_{1}^{p}\right\} E\left\{x_{2}^{q}\right\}$, for all $q, p \in\{1, \ldots, 4\}$. Then the above formula can be further rewritten:

$$
\begin{aligned}
\operatorname{kurt}\left(x_{1}+x_{2}\right)= & E\left\{x_{1}^{4}\right\}+4 E\left\{x_{1}^{3}\right\} E\left\{x_{2}\right\}+6 E\left\{x_{1}^{2}\right\} E\left\{x_{2}^{2}\right\}+4 E\left\{x_{1}\right\} E\left\{x_{2}^{3}\right\}+E\left\{x_{2}^{4}\right\} \\
& -3 E\left\{x_{1}^{2}\right\}^{2}-12 E\left\{x_{1}^{2}\right\} E\left\{x_{1}\right\} E\left\{x_{2}\right\}-6 E\left\{x_{1}^{2}\right\} E\left\{x_{2}^{2}\right\} \\
& -12 E\left\{x_{1}\right\}^{2} E\left\{x_{2}\right\}^{2}-12 E\left\{x_{1}\right\} E\left\{x_{2}\right\} E\left\{x_{2}^{2}\right\}-3 E\left\{x_{2}^{2}\right\}^{2} .
\end{aligned}
$$

Here, $E\left\{x_{1}\right\}=E\left\{x_{2}\right\}=0$, so the above reduces to
$\operatorname{kurt}\left(x_{1}+x_{2}\right)=E\left\{x_{1}^{4}\right\}+6 E\left\{x_{1}^{2}\right\} E\left\{x_{2}^{2}\right\}+E\left\{x_{2}^{4}\right\}-3 E\left\{x_{1}^{2}\right\}^{2}-6 E\left\{x_{1}^{2}\right\} E\left\{x_{2}^{2}\right\}-3 E\left\{x_{2}^{2}\right\}^{2}$.
The terms $6 E\left\{x_{1}^{2}\right\} E\left\{x_{2}^{2}\right\}$ and $-6 E\left\{x_{1}^{2}\right\} E\left\{x_{2}^{2}\right\}$ cancel each other. Rearranging terms, we get

$$
\operatorname{kurt}\left(x_{1}+x_{2}\right)=E\left\{x_{1}^{4}\right\}-3 E\left\{x_{1}^{2}\right\}^{2}+E\left\{x_{2}^{4}\right\}-3 E\left\{x_{2}^{2}\right\}^{2}=\operatorname{kurt}\left(x_{1}\right)+\operatorname{kurt}\left(x_{2}\right) .
$$

Let us prove the second property $\operatorname{kurt}\left(\alpha x_{1}\right)=\alpha^{4} \operatorname{kurt}\left(x_{1}\right)$. We have

$$
\begin{gathered}
\operatorname{kurt}\left(\alpha x_{1}\right)=E\left\{\left(\alpha x_{1}\right)^{4}\right\}-3\left(E\left\{\left(\alpha x_{1}\right)^{2}\right\}\right)^{2}=E\left\{\alpha^{4} x_{1}^{4}\right\}-3\left(E\left\{\alpha^{2} x_{1}^{2}\right\}\right)^{2} \\
=\alpha^{4} E\left\{x_{1}^{4}\right\}-3\left(\alpha^{2} E\left\{x_{1}^{2}\right\}\right)^{2}=\alpha^{4} E\left\{x_{1}^{4}\right\}-3 \alpha^{4}\left(E\left\{x_{1}^{2}\right\}\right)^{2} \\
=\alpha^{4}\left(E\left\{x_{1}^{4}\right\}-3\left(E\left\{x_{1}^{2}\right\}\right)^{2}\right)=\alpha^{4} \operatorname{kurt}\left(x_{1}\right) .
\end{gathered}
$$

4. Let \mathbf{x} be the observed vector, and denote

$$
\mathbf{x}_{2}=\mathbf{E D}^{-1 / 2} \mathbf{E}^{T} \mathbf{x},
$$

where \mathbf{E} is the orthogonal matrix of eigenvectors of $E\left\{\mathbf{x x}^{T}\right\}, \mathbf{D}$ is the diagonal matrix of its eigenvalues, $\mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$, and $\mathbf{D}^{-1 / 2}$ is a diagonal matrix whose diagonal elements are simply those of \mathbf{D} raised to power $-1 / 2, \mathbf{D}=\operatorname{diag}\left(d_{1}^{-1 / 2}, \ldots, d_{n}^{-1 / 2}\right)$. Let us show that \mathbf{x}_{2} is white.
Assume that \mathbf{x} is zero-mean $(E\{\mathbf{x}\}=\mathbf{0})$. The matrices \mathbf{E} and \mathbf{D} are constant with regard to the expectation operator. Then

$$
E\left\{\mathbf{x}_{2}\right\}=E\left\{\mathbf{E D}^{-1 / 2} \mathbf{E}^{T} \mathbf{x}\right\}=\mathbf{E D}^{-1 / 2} \mathbf{E}^{T} E\{\mathbf{x}\}=\mathbf{E D}^{-1 / 2} \mathbf{E}^{T} \mathbf{0}=\mathbf{0}
$$

It remains to show that $E\left\{\mathbf{x}_{2} \mathbf{x}_{2}^{T}\right\}=\mathbf{I}$. We have

$$
\begin{gathered}
E\left\{\mathbf{x}_{2} \mathbf{x}_{2}^{T}\right\}=E\left\{\left(\mathbf{E D}^{-1 / 2} \mathbf{E}^{T} \mathbf{x}\right)\left(\mathbf{E D}^{-1 / 2} \mathbf{E}^{T} \mathbf{x}\right)^{T}\right\}=E\left\{\mathbf{E D}^{-1 / 2} \mathbf{E}^{T} \mathbf{x x}^{T} \mathbf{E D}^{T-1 / 2} \mathbf{E}^{T}\right\} \\
=\mathbf{E D}^{-1 / 2} \mathbf{E}^{T} E\left\{\mathbf{x x}^{T}\right\} \mathbf{E} \mathbf{D}^{T-1 / 2} \mathbf{E}^{T}
\end{gathered}
$$

where the last equality follows because \mathbf{E} and \mathbf{D} are constant with regard to expectation. From the definition of \mathbf{E} and \mathbf{D} we have the eigendecomposition

$$
E\left\{\mathbf{x} \mathbf{x}^{T}\right\}=\mathbf{E D E}^{T}
$$

Inserting this into the previous equation we get

$$
E\left\{\mathbf{x}_{2} \mathbf{x}_{2}^{T}\right\}=\mathbf{E D}^{-1 / 2} \mathbf{E}^{T}\left(\mathbf{E D E}^{T}\right) \mathbf{E D}^{T-1 / 2} \mathbf{E}^{T}
$$

Since the eigenvector matrix \mathbf{E} is orthogonal, we have $\mathbf{E}^{T} \mathbf{E}=\mathbf{E} \mathbf{E}^{T}=\mathbf{I}$. Applying this, we get

$$
\begin{gathered}
E\left\{\mathbf{x}_{2} \mathbf{x}_{2}^{T}\right\}=\mathbf{E D}^{-1 / 2}\left(\mathbf{E}^{T} \mathbf{E}\right) \mathbf{D}\left(\mathbf{E}^{T} \mathbf{E}\right) \mathbf{D}^{T-1 / 2} \mathbf{E}^{T} \\
=\mathbf{E D}^{-1 / 2} \mathbf{I D I D} \mathbf{D}^{T-1 / 2} \mathbf{E}^{T}=\mathbf{E}\left(\mathbf{D}^{-1 / 2} \mathbf{D D}^{T-1 / 2}\right) \mathbf{E}^{T} \\
=\mathbf{E}\left(\operatorname{diag}\left(d_{1}^{-1 / 2}, \ldots, d_{n}^{-1 / 2}\right) \operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \operatorname{diag}\left(d_{1}^{-1 / 2}, \ldots, d_{n}^{-1 / 2}\right)\right) \mathbf{E}^{T} \\
=\mathbf{E}\left(\operatorname{diag}\left(d_{1}^{-1 / 2}, \ldots, d_{n}^{-1 / 2}\right) \operatorname{diag}\left(d_{1}^{1 / 2}, \ldots, d_{n}^{1 / 2}\right)\right) \mathbf{E}^{T} \\
=\mathbf{E I E}^{T}=\mathbf{E E}^{T}=\mathbf{I} .
\end{gathered}
$$

Therefore \mathbf{x}_{2} is white.
5. Let us consider the distribution

$$
g(x)=\frac{b}{4}\{\exp (-b|x-a|)+\exp (-b|x+a|)\}
$$

where we assume $b>0$ (otherwise $g(x)$ would not be a distribution).
(a) The $n^{\text {th }}$ order moment of a distribution $p(x)$ with infinite support is

$$
m_{n}=\int_{-\infty}^{\infty} p(x) x^{n} d x
$$

Note that $g(x)$ is symmetric about zero. Therefore the mean (first moment) of the distribution is zero (this can also be proved by integration). The kurtosis of $g(x)$ (the kurtosis of a random variable x distributed according to $g(x)$) is then defined by

$$
\operatorname{kurt}_{g(x)}(x)=E\left\{x^{4}\right\}-3\left(E\left\{x^{2}\right\}\right)^{2}=m_{4}-3 m_{2}^{2}
$$

Let us calculate m_{4} and m_{2}. For m_{n} we have

$$
\begin{aligned}
m_{n}= & \int_{-\infty}^{\infty} g(x) x^{n} d x=\frac{b}{4} \int_{-\infty}^{\infty}\{\exp (-b|x-a|)+\exp (-b|x+a|)\} x^{n} d x \\
& =\frac{b}{4} \int_{-\infty}^{\infty} \exp (-b|x-a|) x^{n} d x+\frac{b}{4} \int_{-\infty}^{\infty} \exp (-b|x+a|) x^{n} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{b}{4}\left[\int_{-\infty}^{a} e^{b(x-a)} x^{n} d x+\int_{a}^{\infty} e^{-b(x-a)} x^{n} d x+\int_{-\infty}^{-a} e^{b(x+a)} x^{n} d x+\int_{-a}^{\infty} e^{-b(x+a)} x^{n} d x\right] \\
& =\frac{b}{4}\left[e^{-b a} \int_{-\infty}^{a} e^{b x} x^{n} d x+e^{b a} \int_{a}^{\infty} e^{-b x} x^{n} d x+e^{b a} \int_{-\infty}^{-a} e^{b x} x^{n} d x+e^{-b a} \int_{-a}^{\infty} e^{-b x} x^{n} d x\right]
\end{aligned}
$$

In our case, n is even, so x^{n} is symmetric about zero. Let us then change the integration variable from x to $-x$ in the second and fourth integrals. We get

$$
\begin{gathered}
m_{n}=\frac{b}{4}\left[e^{-b a} \int_{-\infty}^{a} e^{b x} x^{n} d x-e^{b a} \int_{-a}^{-\infty} e^{b x} x^{n} d x+e^{b a} \int_{-\infty}^{-a} e^{b x} x^{n} d x-e^{-b a} \int_{a}^{-\infty} e^{b x} x^{n} d x\right] \\
=\frac{b}{4}\left[e^{-b a} \int_{-\infty}^{a} e^{b x} x^{n} d x+e^{b a} \int_{-\infty}^{-a} e^{b x} x^{n} d x+e^{b a} \int_{-\infty}^{-a} e^{b x} x^{n} d x+e^{-b a} \int_{-\infty}^{a} e^{b x} x^{n} d x\right] \\
=\frac{b}{2}\left[e^{-b a} \int_{-\infty}^{a} e^{b x} x^{n} d x+e^{b a} \int_{-\infty}^{-a} e^{b x} x^{n} d x\right] .
\end{gathered}
$$

The remaining integrals can be computed by partial integration. For $n=4$ we have

$$
\begin{gathered}
\int_{-\infty}^{c} e^{b x} x^{4} d x=\frac{c^{4}}{b} e^{b c}-\int_{-\infty}^{c} \frac{4}{b} e^{b x} x^{3} d x \\
=\left[\frac{c^{4}}{b}-\frac{4 c^{3}}{b^{2}}\right] e^{b c}+\int_{-\infty}^{c} \frac{12}{b^{2}} e^{b x} x^{2} d x=\left[\frac{c^{4}}{b}-\frac{4 c^{3}}{b^{2}}+\frac{12 c^{2}}{b^{3}}\right] e^{b c}-\int_{-\infty}^{c} \frac{24}{b^{3}} e^{b x} x d x \\
=\left[\frac{c^{4}}{b}-\frac{4 c^{3}}{b^{2}}+\frac{12 c^{2}}{b^{3}}-\frac{24 c}{b^{4}}\right] e^{b c}+\int_{-\infty}^{c} \frac{24}{b^{4}} e^{b x} d x=\left[\frac{c^{4}}{b}-\frac{4 c^{3}}{b^{2}}+\frac{12 c^{2}}{b^{3}}-\frac{24 c}{b^{4}}+\frac{24}{b^{5}}\right] e^{b c}
\end{gathered}
$$

Inserting this result into the formula for m_{4}, with a and $-a$ in place of c, respectively, we get

$$
\begin{gathered}
m_{4}=\frac{b}{2} e^{-b a+b a}\left[\left(\frac{a^{4}}{b}-\frac{4 a^{3}}{b^{2}}+\frac{12 a^{2}}{b^{3}}-\frac{24 a}{b^{4}}+\frac{24}{b^{5}}\right)+\left(\frac{a^{4}}{b}+\frac{4 a^{3}}{b^{2}}+\frac{12 a^{2}}{b^{3}}+\frac{24 a}{b^{4}}+\frac{24}{b^{5}}\right)\right] \\
=b\left[\frac{a^{4}}{b}+\frac{12 a^{2}}{b^{3}}+\frac{24}{b^{5}}\right] .
\end{gathered}
$$

Performing a similar partial integration procedure for m_{2}, we get

$$
m_{2}=\frac{b}{2}\left[e^{-b a} e^{b a}\left(\frac{a^{2}}{b}-\frac{2 a}{b^{2}}+\frac{2}{b^{3}}\right)+e^{b a} e^{-b a}\left(\frac{a^{2}}{b}+\frac{2 a}{b^{2}}+\frac{2}{b^{3}}\right)\right]=b\left[\frac{a^{2}}{b}+\frac{2}{b^{3}}\right] .
$$

Inserting these results into the moment-based formula for the kurtosis, we have

$$
\operatorname{kurt}_{g(x)}(x)=m_{4}-3 m_{2}^{2}=b\left[\frac{a^{4}}{b}+\frac{12 a^{2}}{b^{3}}+\frac{24}{b^{5}}\right]-3 b^{2}\left[\frac{a^{4}}{b^{2}}+\frac{4 a^{2}}{b^{4}}+\frac{4}{b^{6}}\right]=\frac{12-2 a^{4} b^{4}}{b^{4}} .
$$

Let us assume that the distribution $g(x)$ has unit variance $\left(m_{2}=1\right)$. Then

$$
\begin{gathered}
b\left[\frac{a^{2}}{b}+\frac{2}{b^{3}}\right]=a^{2}+\frac{2}{b^{2}}=1 \Rightarrow\left(a^{2}+\frac{2}{b^{2}}\right)^{2}=a^{4}+\frac{4 a^{2}}{b^{2}}+\frac{4}{b^{4}}=1 \\
\Rightarrow b^{4}=b^{4} a^{4}+4 a^{2} b^{2}+4 \Rightarrow \operatorname{kurt}_{g(x)}(x)=\frac{12-2 a^{4} b^{4}}{4+4 a^{2} b^{2}+a^{4} b^{4}} .
\end{gathered}
$$

Here we require $b^{2}>0 \Rightarrow a^{2}<1$, where the the right-hand side follows from the unit variance assumption. In this case, the previous formula is in fact simpler.
(b) Since $b^{4}>0$, the sign of the kurtosis depends only on the numerator term of the above expression.
i. When the kurtosis is negative, we have

$$
12-2 a^{4} b^{4}<0 \Rightarrow a^{4}>\frac{6}{b^{4}} \Rightarrow a^{2}>\frac{\sqrt{6}}{b^{2}} \Rightarrow|a|>\frac{\sqrt[4]{6}}{b} .
$$

With the unit variance assumption, we have $b^{4}=4 /\left(1-2 a^{2}+a^{4}\right)$, from which

$$
\begin{gathered}
a^{4}>\frac{6}{b^{4}}=\frac{3}{2}\left(1-2 a^{2}+a^{4}\right) \Rightarrow a^{4}-6 a^{2}+3<0, a^{2}>0 \\
\Rightarrow 3-\sqrt{6}<a^{2}<3+\sqrt{6} \Rightarrow \sqrt{3-\sqrt{6}}<|a|<\sqrt{3+\sqrt{6}} \Rightarrow \sqrt{3-\sqrt{6}}<|a|<1 .
\end{gathered}
$$

The corresponding values for b can be calculated from the unit variance assumption (see the formula above).
ii. The kurtosis is zero when $|a|=\sqrt[4]{6} / b$. In the unit variance case this becomes $|a|=\sqrt{3-\sqrt{6}}$ (2 points).
iii. The kurtosis is positive when $|a|<\sqrt[4]{6} / b$. In the unit variance case this becomes $|a|<\sqrt{3-\sqrt{6}}$ (1 interval).
(c) Distributions (or the associated random variables) with negative kurtosis are called subgaussian and distributions with positive kurtosis are called supergaussian. Here, the distribution $g(x)$ can be either, depending on the values of a and b (see the previous section). In the figure below, the solid curve is subgaussian, the dashed curve has zero kurtosis and the dashdot curve is supergaussian.

