
T-61.5030 Advanced course in neural computing

Solutions for exercise 6

1. (a) The original sources and the two linear mappings are
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(b) The covariance is defined by Σ = E{xxT} −E{x}E{xT}. In this case the mixtures
have zero mean and the second term vanishes. We have
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because Σs = I/3. Similarly Σ2 = A2A
T
2
/3. By computing the matrix products, we

find out that
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This shows that two different rotations can produce the same covariance matrix.

(c) The whitening can be achieved by rotating the mixtures such that the principal
components are axis aligned which means that the resulting mixtures have a diagonal
covariance matrix. This diagonalisation can be done by projecting the mixtures to
the eigen vectors of the covariance matrix. In other words, we will find an orthogonal
matrix V containing the eigen vectors and the corresponding diagonal matrix D

containing the eigen values, which satisfy Σ1 = VDVT . Denote the rotated mixtures
by y1 = VTx1 and y2 = VTx2. We then have

E{y1y
T
1
} = VT E{x1x

T
1
}V = VT Σ1V = VTVDVTV = D ,

which shows that y1 has a diagonal covariance matrix. The same holds for y2,
because Σ1 = Σ2. The new coordinate systems look like this
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The final step in whitening makes the covariance matrix a unit matrix. This is
achieved by dividing each axis by the standard deviation in that direction. The
variances are found from the diagonal of the matrix D. We then have the whitend
mixtures z1 = D−1/2y1 and z2 = D−1/2y2, where D−1/2 is defined to be the diagonal
matrix where the diagonal elements of D have raised to the power −1/2. The
whitened mixtures look like
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We notice that the whitening has given the original sources up to scaling and or-
thogonal rotation.

(d) An orthogonal rotation to z1 or z2 will leave the covariance matrix to be the unit
matrix. This is because

E{(Wz1)(Wz1)
T} = WE{z1z

T
1
}WT = WIWT = I .

(e) Kurtosis can be used as a measure for non-Gaussianity. The plots for kurtosis look
like
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The points which are furthest away from zero, in this case the points which are most
negative, are the angles where the rotation produces the least Gaussian projections.
These are the ones which give the original sources. For z1 the rotation is 0, 90, 180
or 270 degrees while for z2 the rotation is 45, 135, 225 or 315 degrees.

(f) Any other measure of non-Gaussianity can be used. A simple way to construct such
a measure is to take a function f and compare its expectation over the data with
the expectation which would be given by a Gaussian distribution having the same
variance. With f(x) = |x|, for example we have a measure

E{|x|} −
√

2/π ,

because the expectation of |x| for a normal distribution is
√

2/π. The plot of this
measure looks like this:
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In this case the values are positive and the points which are furthest from zero are
the ones which are most positive.

2. Starting from the definition I(X; Y ) = h(X)−h(X|Y ), where h(X) is defined in Haykin,
eq. (10.12), and h(X|Y ) is defined in Haykin, eq. (10.33), we have

I(X; Y ) = −

∫

p(x) ln p(x)dx +

∫

p(x, y) ln p(x|y)dxdy =

−

∫

p(x, y) ln p(x)dxdy +

∫

p(x, y) ln
p(x, y)

p(y)
dxdy =

∫

p(x, y) ln
p(x, y)

p(x)p(y)
dxdy = D(p(x, y)||p(x)p(y)) .

3. Negentropy measures how much the (differential) entropy of a distribution differs from
that of the Gaussian distribution having the same variance. If hG(Yi) denotes the entropy
of the Gaussian distribution having the same variance as the random variable Yi, the
negentropy is J(Yi) = hG(Yi) − h(Yi). Recall that from all distributions with a given



variance, the Gaussian distribution has the highest entropy. Negentropy is thus always
non-negative and is zero if and only if Yi has a Gaussian distribution.

The mutual information can be written as

I(Y1, . . . , Yn) =

N
∑

i=1

h(Yi) − h(Y1, . . . , Yn) .

Therefore

I(Y1, . . . , Yn) =

N
∑

i=1

[hG(Yi) − J(Yi)] − h(Y1, . . . , Yn) = C −

N
∑

i=1

J(Yi) ,

where C is constant. The terms hG(Yi) are clearly constant since the variance for all Yi

was defined to be the same (unity) and the entropy of a Gaussian scalar variable depends
only on its variance.

Y is defined to have a unit covariance matrix; this means that different transformation
matrices W can differ only up to a orthogonal rotation (see the solution to exercise
problem 6.1). Therefore the term h(Y1, . . . , Yn) is constant because entropy does not
change in translations or orthogonal rotations; this is because they leave the form of the
probability density untouched.

ICA can be defined as the search for the rotation which minimises the mutual information
between the resulting components. The above formula for mutual information shows that
this can be done also by maximising the negentropies of the components.


