
T-61.5030 Advanced course in neural computing

Solutions for exercise 5

1. We shall prove that PCA miminizes the difference

Ex,y[d(x,y)2 − d(x′,y′)2] = Ex,y[d(x,y)2] − Ex,y[d(x′,y′)2]

where x and y are n-dimensional data points, x′ and y′ are their orthonormal projections
to a lower-dimensional space, and the minimum is taken over all orthonormal projections.
The equality follows from the linearity of the expectation operator. The first term on the
right side does not depend on the projection, so minimizing the difference corresponds to
the maximizing the second term.

Assume that Ex[x] = 0 ⇒ Ex[Wx] = 0 ∀W, where W is some linear projection. Note:
if x = x0 + µ where Ex0

[x0] = 0, then d(x,y) = d(x0 + µ,y0 + µ) = d(x0,y0), so
the assumption does not cause loss of generality. We may rewrite the expected squared
distance of the projections as

Ex,y[‖x′‖2 + ‖y′‖2 − 2x
′Ty′] = 2Ex[‖x

′‖2]

where the inner product term disappears because x and y are zero-mean, and the quadratic
terms have equal expectations because x and y come from the same distribution.

The projection basis is an orthonormal set of m vectors, m < n. Denote this basis
[u1, . . .um]. The projection of point x can be written as

x′ =
m
∑

k=1

(uT
k x)uk

and its squared length is

‖x′‖2 =

m
∑

k=1

(uT
k x)2 .

The expectation of the squared length, which we must maximize, is

E

[

m
∑

k=1

(uT
k x)2

]

=
m
∑

k=1

E[uT
k xxTuk] =

m
∑

k=1

uT
k E[xxT ]uk =

m
∑

k=1

uT
k Ruk (1)

where R is the covariance matrix of x.

As restrictions we have uT
k uk = 1, and uT

k ul = 0 for l 6= k. We will take them into account
with Lagrange multipliers: λkk for the first kind of restrictions and λkl for the second.
Since λkl are arbitrary multipliers, for later convenience we will write −λkl instead.

At the minimum, the uk-gradient of the above expression, plus the uk-gradients of the
restriction functions times the corresponding Lagrange multipliers, is zero for all uk. That
is, we have

2Ruk − 2λkkuk + 2

n
∑

l=m+1,l 6=k

(−λkl)ul = 2

(

Ruk −

n
∑

l=m+1

λklul

)

= 0 , 1 ≤ k ≤ m .



Collecting all uk, k = 1, . . . , m, into a n × m matrix U, and the multipliers λkl, k, l =
1, . . . , m, into a m × m matrix Λ, we have

RU −UΛ = 0 (2)

where 0 is a n × m matrix of zeroes.

Suppose that the off-diagonal elements of Λ are zero: λkl = 0 for l 6= k. Then it is easy to
see that if uk are some eigenvectors of R and λkk are the corresponding eigenvalues, we
have Ruk = λkkuk and equation (2) is satisfied. But then the expected squared length of
the projection, equation (1), becomes

m
∑

k=1

λkk(u
T
k uk) =

m
∑

k=1

λkk .

The choice of eigenvectors that yields the largest value is when the λkk, 1 ≤ k ≤ m, are
the m largest eiqenvalues. But this is exactly the result PCA gives. Therefore PCA also
minimizes our initial cost function.1

Note: any orthogonal rotation of the basis vectors U that preserves the projection space
also satisfies equation (2). To show this, write U′ = UW where W is an (orthogonal)
rotation matrix. Since W is orthogonal, WWT = WTW = I, U = U′WT , and equation
(2) becomes

RU′WT −U′WTΛ = 0 ⇒ RU′WTW −U′WTΛW = RU′ − U′Λ′ = 0

where we denoted Λ′ = WTΛW.

2.
λ1 = 1 + σ2 (3)

q1 = s (4)

X(n) = s + V(n) (5)

⇒ R = E[XXT ] = E[(s + V)(sT + VT )] = E[ssT + sVT + VsT + VVT ]

= ssT + sE[VT ] + E[V]sT + E[VVT ] = ssT + σ2I (6)

In the last equality, V(n) is zero-mean, so the terms with the mean vanish, and since
V(n) is a white-noise component, its covariance matrix is diagonal with equal variances
σ2. Hence we get

Rq1 = (ssT + σ2I)q1 = ssT s + σ2s = (‖s‖2 + σ2)s = (1 + σ2)s = λ1q1 (7)

where we have used the definition of q1 in the first equality, the fact that s is a unit vector
in the fourth, and the definitions of λ1 and q1 again in the last.

1Technically, this argument only shows that the PCA solution makes the gradient zero, not that it maximizes

the expected squared length. For a more complete discussion, see P. Baldi and K. Hornik, Neural Networks

and Principal Component Analysis: Learning from Examples Without Local Minima, Neural Networks, Vol. 2,

pages 53-58, 1989.



3. From Haykin, Eq. 8.46, we have the update formula

w(n + 1) = w(n) + ηy(n)[x(n) − y(n)w(n)] . (8)

Since we assume E[x(n)] = 0, then also E[y(n)] = E[w(n)Tx(n)] = 0, and hence the
variance of the output at iteration n is

σ2

y(n) = E[y(n)2] = E[w(n)Tx(n)x(n)T w(n)]T

= w(n)T E[x(n)x(n)T ]w(n) = w(n)TRw(n) (9)

where R = E[x(n)x(n)T ] is the correlation matrix of the inputs. Note that R does not
depend on n since the x(n) are drawn from the same distribution for all n.

From Haykin, Eq. 8.54 we have the convergence result (Ljung, 1977; Kushner and Clark,
1978):

lim
n→∞

w(n) = q1, infinitely often with probability 1 (10)

where q1 is the eigenvector associated with the largest eigenvalue λ1 of R.

Taking the limit on both sides of (9) we have (infinitely often with probability 1)

lim
n→∞

σ2

y(n) = ( lim
n→∞

w(n)T )R( lim
n→∞

w(n)) = qT
1 Rq1 . (11)

By the definition of q1 we have Rq1 = λ1q1 and ||q1|| = 1. The above equation therefore
becomes

lim
n→∞

σ2

y(n) = qT
1 λ1q1 = λ1||q1||

2 = λ1 (12)

which shows that as n approaches infinity, the variance of the filter output approaches
(infinitely often with probability 1) the largest eigenvalue of the covariance matrix of the
inputs.

4. From Haykin, Eq. (8.144) we have

q̃ =

N
∑

j=1

αjφ(xj) . (13)

Multiplying q̃ by its transpose, we form the inner product

q̃T q̃ =

N
∑

i=1

N
∑

j=1

αiαjφ
T (xi)φ(xj) =

N
∑

i=1

N
∑

j=1

αiKijαj = α
TKα , (14)

where K is the inner-product kernel matrix.

From Haykin, Eq. (8.151) we also have

Kα = λα . (15)

Premultiplying both sides of this equation by α
T , we have

α
TKα = λα

T
α . (16)



Combining equations (14) and (16), we have for k = 1, . . . , p

q̃T
k q̃k = λα

T
k αk . (17)

Hence, for the condition q̃T
k q̃k = 1 for k = 1, . . . , p to be satisfied, we require that

α
T
k αk =

1

λk

(18)

for k = 1, . . . , p, where λp is the smallest nonzero eigenvalue of the kernel matrix K.


