T-61.5030 Advanced course in neural computing

Solutions for exercise 1

- 1. (a) Learning type: error-correction learning, memory-based learning, Hebbian learning, or competitive learning.
 - (b) Category of architecture: feedforward network, recurrent network, competitive network.
 - (c) Type of task: supervised, unsupervised, reinforcement learning.
 - (d) Functions of neurons: projections or distances from points in space.
 - (e) Suitable for these tasks: pattern association, pattern recognition, function approximation, control, filtering, density estimation, visualization, summarization, other

	_			
	Р	MLP	RBF	SOM
(a)	ecl			cl
(b)		feedforwa	cn	
(c)		supervise	usl	
(d)	pro	ojections	both	dfp

(e)	Р	MLP	RBF	SOM
pa				s
\mathbf{pr}	\mathbf{S}	W	W	s
fa		W	W	s
с		W	W	s
f		s	s	s
de				s
V				W
S				W

W: well suited s: to some extent

2. In the following, E_y denotes the expectation over y. Assuming that \mathbf{x} and \mathcal{T} are fixed, $E_{\epsilon}\{\epsilon\} = 0$ and $d = f(\mathbf{x}) + \epsilon$, it follows that

$$\mathcal{E}(\mathbf{x}) = E_{\epsilon}\{(d - F(\mathbf{x}, \mathcal{T}))^2\} = E_{\epsilon}\{(f(\mathbf{x}) - F(\mathbf{x}, \mathcal{T}) + \epsilon)^2\} = (f(\mathbf{x}) - F(\mathbf{x}, \mathcal{T}))^2 + 2(f(\mathbf{x}) - F(\mathbf{x}, \mathcal{T}))E_{\epsilon}\{\epsilon\} + E_{\epsilon}\{\epsilon^2\} = (f(\mathbf{x}) - F(\mathbf{x}, \mathcal{T}))^2 + E_{\epsilon}\{\epsilon^2\}.$$

3. For a fixed \mathbf{x} ,

$$E_{\mathcal{T}}\{(f(\mathbf{x}) - F(\mathbf{x}, \mathcal{T}))^{2}\} = E_{\mathcal{T}}\{(f(\mathbf{x}) - E_{\mathcal{T}}\{F(\mathbf{x}, \mathcal{T})\} + E_{\mathcal{T}}\{F(\mathbf{x}, \mathcal{T})\} - F(\mathbf{x}, \mathcal{T}))^{2}\} = (f(\mathbf{x}) - E_{\mathcal{T}}\{F(\mathbf{x}, \mathcal{T})\})^{2} + 2(f(\mathbf{x}) - E_{\mathcal{T}}\{F(\mathbf{x}, \mathcal{T})\})E_{\mathcal{T}}\{E_{\mathcal{T}}\{F(\mathbf{x}, \mathcal{T})\} - F(\mathbf{x}, \mathcal{T})\} + E_{\mathcal{T}}\{(E_{\mathcal{T}}\{F(\mathbf{x}, \mathcal{T})\} - F(\mathbf{x}, \mathcal{T}))^{2}\}.$$

The second term vanishes because

$$E_{\mathcal{T}}\{E_{\mathcal{T}}\{F(\mathbf{x},\mathcal{T})\}-F(\mathbf{x},\mathcal{T})\}=E_{\mathcal{T}}\{F(\mathbf{x},\mathcal{T})\}-E_{\mathcal{T}}\{F(\mathbf{x},\mathcal{T})\}=0$$

Hence

$$E_{\mathcal{T}}\{(f(\mathbf{x}) - F(\mathbf{x}, \mathcal{T}))^2\} = (f(\mathbf{x}) - E_{\mathcal{T}}\{F(\mathbf{x}, \mathcal{T})\})^2 + E_{\mathcal{T}}\{(F(\mathbf{x}, \mathcal{T}) - E_{\mathcal{T}}\{F(\mathbf{x}, \mathcal{T})\})^2\}.$$