Adaptive handwriting recognition: Adaptive classifiers and an adaptive committee

Matti Aksela

Neural Networks Research Centre Laboratory of Computer and Information Science Helsinki University of Technology

8. December 2005

Introduction

- Handwriting recognition
 - vast amount of intrinsic variation
 - limited amount of models
 - how to take into account all variability in the data?
- Additionally, situation may change in time
 - for example in handwriting recognition writing style may change due to
 - 1. position (standing vs. sitting)
 - 2. movement (in a car, train, bus,...)
 - 3. speed (in a hurry vs. taking ones time)
 - 4. entirely different writers
 - 5. many, many different reasons

- Adaptation
 - a classifier can attempt to adapt to a particular writer to obtain optimal performance
 - classifier adaptation or committee adaptation possible
 - classifier adaptation can be more efficient due to the adaptation taking place on for example the prototype set
 - committee adaptation can use a variety of classifiers without need of detailed information on the problem at hand and still provide significant improvements

- Combining classifiers
 - take the outputs of a set of member classifiers
 - attempt combine the results in a way that improves performance
- Members have a significant effect on performance
 - classifiers' individual error rates
 - correlatedness of the errors made by the classifiers
- The more different the mistakes made by the classifiers are, the more beneficial the combination of the classifiers can be

- Adaptive combination of adaptive classifiers
 - when striving for the best possible performance, combining adaptive classifiers in an adaptive fashion could be interesting
 - problem: predicting the behavior of adaptive classifiers is very difficult, as their behavior by definition changes in time
 - solution: balance between learning and robustness

Adaptive Classifier

- Classification based on using the *k*-NN rule on matching the input sample to a prototype set
- Member classifiers use Dynamic Time Warping distances; PP, NPP, PL

- When using a prototype based classifier, the prototype set may be modified:
 - adding new prototypes
 - remove bad or unused prototypes
 - adjust prototypes (LVQ variant)
 - hybrid approach: add new prototypes if none of the k nearest neighbors correct, otherwise adjust

Adaptive Committee Classifier

- A way to estimate confidence in classifier decisions
 - separate classification units that makes decisions on the correctness of the members can be used, called critic-driven schemes
 - an estimate can also be based on prior data
- The presented scheme:
 - 1. confidence evaluation based on information on previous decisions
 - 2. a balance between the impact of the older and more recent samples
 - use a weighting scheme to focus on more recent samples

Adaptive Committee Classifier

- Class-Confidence Critic Combining (CCCC)
 - experts assess member classifier correctness
 - confidence in decisions estimated from previous behavior in same class
 - critics produce confidence values used in classification
- Committee structure
 - one critic for each classifier
 - one distance distribution per class in each critic
 - combination scheme based on the evaluated confidences
 - added weighting scheme to balance prior sample impact

Adaptive Handwriting recognition: Adaptive classifiers and an adaptive committee - 11.12.2006 (9)

Operation overview

- 1. Member classifiers produce classification results and distances
- 2. Distances are normalized
- 3. Confidences for classifications are calculated in critics based on the normalized distances and prior data
- 4. Committee decision based on confidences
- 5. Two-phased committee adaptation

CCCC step 1: Member classifiers

- Member classifiers produce classification results
 - a sample x is input
 - the input is classified by all K member classifiers who produce for every one of C possible classes a distance-indicating value $d_c^k(x)$
 - if the classifiers doesn't work with distances, transform measure to be used into a distance (for example, for a confidence measure $t \in [0-1]$ use 1-t)
 - $d_c^k(x) \in [0, \inf]$; distance to the nearest prototype of class c from classifier k
 - an infinite distance may be produced if matching is not possible

CCCC step 2: Distance normalization

• The normalized distance is defined as

$$q_c^k(x) = \begin{cases} \frac{d_c^k(x)}{\sum_{i=1}^C \hat{d}_i^k(x)} & \text{, if } d_c^k(x) \text{ is finite} \\ 1 & \text{, otherwise} \end{cases}$$

where $\hat{d}_c^k(x)$ equals $d_c^k(x)$ if $d_c^k(x)$ is finite and is otherwise zero

• If the distance to only one class is finite, the normalized distance for that class is defined to be zero

CCCC step 3: Confidence calculation

- The received $d^k(x)$ values are modeled by gathering previous values into distributions from which the value for the confidence can be obtained. To shorten the notation, $p^i(q_c^k(x)) = p_c^i(z)$.
- Exponential kernel distribution estimate

$$p_c^k(q_c^k(x)) = \frac{1}{\sum_{j=1}^{N_i} w_i(z_j^i)} \sum_{j=1}^{N_i} w_i(z_j^i) e^{-\frac{|z-z_j^i|}{b}}$$

CCCC step 4: Decision

• Overall confidence is calculated from the confidence obtained from the critics and the corresponding classifiers correctness rate

 $u_c^k(x) = p_c^k(q_c^k(x)) \cdot q_c^k(x) \cdot p(\text{classifier } k \text{ correct})$

• Final decision using the Sum rule:

$$c(x) = \arg \max_{j=1}^{C} \sum_{k=1}^{K} u_j^k(x)$$

CCCC step 5: Weights and adaptation

- Information of the correctness of the classification is assumed to be known
- Two-phased adaptation
 - 1. classified samples $d^k(x)$ values are inserted into the critics' distribution model whenever that particular critics' classifier was correct
 - 2. each sample in the distribution models is assigned a weight
- weights in the distribution are recalculated to decrease in accordance with a decay constant λ

$$w_i(z_i^j) = \max\{0, 1 - \lambda(N_i - n_i(z_j^i))\}$$

Committee operation example

- Example: K classifiers and C classes
 - 1. Each classifier classifies the input, resulting in K vectors of C distance values $d^k_c(\boldsymbol{x})$
 - 2. Distances are normalized to obtain values $q_c^k(x)$
 - 3. Critics produce confidence values $p_c^k(q_c^k(x))$ from the distribution models of previous classification results
 - 4. Confidence values are adjusted with the corresponding classifiers correctness rate to produce final confidences $u_c^k(x)$
 - 5. Final output is selected using the sum rule
 - 6. Distributions updated by appending the $q_c^k(x)$ values for the classifiers that were correct to the distribution models
 - 7. Weights are recalculated according to the weighting scheme

Experiments

- Handwritten character recognition, isolated on-line characters
 - collected on a Wacom Artpad II Tablet
 - stored in UNIPEN format
 - upper-case and lower-case letters and digits used
- Three databases

Database	Writers	Characters	Usage
DB1	22	9961	creating member classifiers
DB2	8	8077	evaluating parameters, ordering
DB3	8	8046	testing

• Character examples; some samples of the character 'E'

Adaptive classifier results

- Dynamic Time Warping (DTW) based distances
 - point-to-point (PP), point-to-line (PL) or normalized point-to-point (NPP)
 - scaled using either mass center (MC) or bounding box center (BBC)
 - non-adaptive or adaptive using the hybrid adaptation approach

	Error rate	Error rate
Member classifier	(non-adaptive)	(adaptive)
PP-MC	20.02%	9.87%
PP-BBC	21.18%	9.90%
NPP-MC	20.93%	10.24%
NPP-BBC	21.18%	10.70%
PL-MC	20.77%	15.56%
PL-BBC	22.28%	16.27%

Adaptive committee results

- CCCC Committee
 - compared with simple plurality voting and best individual classifier
 - combination of both adaptive and non-adaptive member classifiers

	Error rate	Error rate
Committee	(non-adaptive members)	(adaptive members)
СССС	15.53%	7.85%
Plurality voting	19.68%	8.69%
Best member	20.02%	9.87%

Adaptive Handwriting recognition: Adaptive classifiers and an adaptive committee - 11.12.2006 (21)

Conclusions

- When applicable, adapting an individual classifier may produce most gain
 - however, not all classifiers equally suitable for adaptation (PP vs PL)
 - adaptation generally increases performance for one subject at the cost of generalization ability, ie. poor performance for other subjects
- Committee adaptation can also produce significant gain
 - as less information on the task at hand is available, adaptation is performed on a more abstract level and hence drastic changes can cause problems
 - robustness for also other subjects is easier to maintain
- Clearly the doubly adaptive strategy of an adaptive combination of adaptive member classifiers provided the best results