
2.9 Learning without a Teacher

• No labeled training examples are now available.

• Two subclasses of learning without a teacher.
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1. Reinforcement learning and Neurodynamic programming

• Block diagram of a reinforcement learning system.

• In reinforcement learning, a scalar index of performance is minimized.

• Here a critic is used.

• It converts a primary reinforcement signal received from the environ-
ment to a higher-quality heuristic reinforcement signal.
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• Both of these signals are scalars.

• The system learns under delayed reinforcement.

• This means that the system observes a temporal sequence of state
vectors.

• This eventually results in the generation of the heuristic reinforcement
signal.

• The goal of the learning is to minimize a cost-to-go-function.

• This is defined as the expectation of the cumulative cost of actions
taken over a sequence of steps.

• Another component of the reinforcement learning system is called the
learning machine.

• Its task is to discover the actions determining the best overall behavior
of the system.
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• Delayed reinforcement learning is difficult to perform for two basic
reasons:
1. There is no teacher;
2. A temporal credit assignment problem must be solved because of
the time delay used.

• On the other hand, delayed reinforcement learning is very appealing.

• Reason: it learns to perform a task using only its own experiences.

• Reinforcement learning is closely related to dynamic programming.

• This was developed in optimal control theory (Bellman, 1957).

• Dynamic programming provides the mathematical formalism for sequen-
tial decision making.

• An introduction to dynamic programming and its relationship to rein-
forcement learning are presented in Chapter 12.
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2. Unsupervised Learning

• In unsupervised (or self-organized) learning there is no external teacher
or critic available for learning.

• Instead, the neural network tries to learn some meaningful internal
statistical representation of the data.

• For example, a suitable linear model fitted to the input data.

• Some task-independent measure is used for the quality of the repre-
sentation.

• The free parameters of the neural network are optimized with respect
to this measure.

• After learning, the network can encode features of the input data.

• Competitive learning (winner-take-all networks) can be used for unsu-
pervised learning.

• Hebbian learning is also often employed.
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• Various forms of unsupervised learning are discussed in Chapters 8-11.

6



2.10 Learning Tasks

Pattern Association

• Associative memory is a brainlike distributed memory that learns by
association.

• Association is an important property of the human memory.

• It is also a basic operation in all models of cognition.

• Two basic forms: autoassociation or heteroassociation.

• In autoassociation, a neural network is first required to store a set of
input patterns (vectors).

• This is done by repeatedly presenting them to the network.

• After learning, a partial or noisy version of an original input pattern is
shown to the network.

• The task is now to retrieve (recall) the original pattern.
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• Heteroassociation differs from autoassociation in that an arbitrary
set of input patterns is paired with another arbitrary set of output
patterns.

• Autoassociation uses unsupervised learning, while heteroassociation
requires supervised learning.

• The operation of an associative memory consists of two phases:
- storage phase (training with input patterns);
- recall phase (retrieval of a memorized pattern).

• If an associative memory cannot retrieve a stored input pattern per-
fectly, it is said to have made an error in recall.

• The number q of patterns stored in an associative memory measures
the storage capacity of the network.

• A design goal: make the storage capacity as large as possible compared
to the number of neurons in the network.

• On the other hand, a large fraction of memorized patterns should be
recalled correctly. — Conflicting goals!
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Pattern Recognition

• Humans are good at pattern recognition.

• Examples: recognizing speech, a familiar face, objects in a scene.

• This ability is achieved through a learning process, or with neural
networks.

• A formal definition of pattern recognition:
A process whereby a received pattern or signal is assigned to one of a
prescribed number of classes (categories).

• In pattern recognition tasks, a neural network is first trained using
input patterns having known categories.

• After training, the network should be able to classify (recognize) new
patterns belonging to the learned classes.

• Formally, each pattern corresponds to a point in a multidimensional
decision space.
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• The decision space is divided into regions corresponding to each pattern
class.

• During the training process, the boundaries between the class regions
are determined.

• Learning is statistical because the input patterns have inherent varia-
bility (coming from some statistical distributions).
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• Neural pattern classifiers can have two general forms:

1. The overall neural recognition system is divided into:

- An unsupervised network for feature extraction.
- A supervised network for subsequent classification.

- In feature extraction, the dimensionality of input
patterns is reduced.
- This data compression makes the subsequent classification
task simpler.

Input
Result of
Classification

Feature
vector
 y

x

Supervised
network for
classification

Unsupervised
network for
feature
extraction
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2. Single multilayer feedforward network.
- Trained using supervised learning.
- Neurons in the hidden layer(s) perform feature extraction.
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Function Approximation

• Consider a nonlinear input-output mapping

d = f(x)

Here x is the input and d the output vector.

• The vector-valued mapping function f(.) is assumed to be unknown.

• However, a set F of N labeled examples is known:

F = {(x1,d1), (x2,d2), . . . , (xN ,dN)}

• The task is to design a neural network whose actual input-output map-
ping F(.) approximates the unknown mapping f(.) well enough.

• Requirement: the Euclidean norm

‖ F(x)− f(x) ‖< ε for all x

where ε is a small positive number.
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• If there are enough training samples as well as free parameters in the
network, the goal can be achieved.

• This approximation problem is a perfect candidate for supervised lear-
ning.

• In fact, supervised learning may be understood as an approximation
problem.

• Two important ways of exploiting the approximation ability of a neural
network:
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1. System identification.

– Neural network learns the input-output mapping f(.) of an
unknown system.

– The system is a time-invariant, multiple-input
multiple-output (MIMO) system.

– The error signal ei between the true output yi of the
network and the desired output di corresponding to the
input vector xi is used for training.
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2. Inverse system.

– In this case, we know the MIMO system mapping d = f(x).

– The task is now to learn the inverse mapping

x = f−1(d).

– A straigthforward inversion of f is often impossible
because f is far too complex.

– The same approach may be applied to the inverse
problem as to standard system identification.

– The roles of x and d are now interchanged.
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Control

• An often encountered task: control of a process or a critical part of a
system.

• Neural networks may be applied instead of classical control theory.
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• A schematic diagram of a feedback control system.

• It is again assumed that an external reference signal d is available.

• The error signal e between d and the output y of a neural network
controller is used for adjusting the free parameters of the network.

• However, now the error signal e propagates through the neural cont-
roller
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• Therefore, for applying error-correction learning algorithm the Jacobian
matrix J is needed.

• The elements of J are the partial derivatives ∂yk/∂uj.

• Here yk is an element of the plant output vector y and uj is an element
of the plant input vector u.

• These partial derivatives are unknown.

• They can be learned either indirectly or directly.

• These methods are discussed briefly on a general level in the book.
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Filtering

• In filtering, some interesting quantity is extracted from noisy observa-
tions using a suitable algorithm or device.

• Assume that we have measurement data up to a discrete time point
n.

• A filter can be used for three basic tasks:

1. Filtering. A quantity is estimated at time n.

2. Smoothing. A quantity is estimated at time n − d, where d is a
positive time delay.

- Thus we have some future measurements from later than the
estimation time available.

3. Prediction. The estimation is performed at some future time n+d,
d > 0.
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• First example of filtering: cocktail party problem.

• Separation of individual voices from their mixtures.

• More generally, this type of filtering problem arises in blind signal se-
paration.
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• Several efficient neural methods have been developed for blind signal
separation recently.

• The data model used in blind signal separation:

x(n) = Au(n)

Here u(n) is a vector consisting of m unknown but mutually statis-
tically independent source signals at time n.

• A is an unknown nonsingular m×m mixing matrix.

• The task is to recover the source signals from the observed mixtures
x(n) in an unsupervised manner.

• This can be done by using the strong but often plausible independence
assumption.
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• A blind separation system

• Second example of filtering: prediction problem.

• Now the task is to predict the present value x(n) of a scalar process
(time series).
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• It is assumed that m previous values x(n−T ), x(n− 2T ), . . . , x(n−
mT ) of the time series are known.

• Here m is the order of prediction.

• This problem may be solved using error-correction learning in an un-
supervised manner.

• x(n) serves the purpose of desired response.

• Neural network provides a method for predicting nonlinear processes.
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Beamforming

• Still one application of neural networks.

• This is needed in processing radar and sonar signal in direction of arrival
estimation.

• Not so important application.
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2.12 Adaptation

• When a neural network operates in a stationary environment, it can
first learn the weight values (parameters).

• After learning, the weight values are frozen and the network is applied
without further learning to new input data.

• However, in practice the environment (data) is often more or less nons-
tationary

• This means that the statistical properties of the data change with time.

• This requires that the neural network should track the statistical va-
riations in the data by adapting its parameters.

• The theory of linear adaptation (linear adaptive filters) is well unders-
tood.

• However, in neural networks nonlinear filters are typically used.
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• In practice, a neural network can be adapted by retraining it at suitable
intervals.

• On short intervals, the data is usually roughly stationary even though
it is generally nonstationary.

• Another adaptation method: continual training with time-ordered examples.

• In this case, the neural network becomes a nonlinear adaptive filter.

• In practice, successful adaptation requires that the time changes in the
data are slow enough.
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3. Single-Layer Perceptrons

3.1 Introduction

• Perceptron is the first neural network model proposed for supervised
learning (Rosenblatt, 1958).

• Simplest form of a neural network used for classification.

• Consists basically of a single neuron with adjustable synaptic weights
and bias.

• Perceptron can be used for classifying linearly separable patterns be-
longing to two classes.

• The learning algorithm converges to a separating hyperplane in this
case.

• Perceptron is closely related to the least-mean-square (LMS) algorithm
or Widrow-Hoff delta rule (1960).
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• The LMS algorithm is applied widely to linear adaptive filtering in
signal processing.

• In this chapter, we first briefly discuss adaptive filtering and the LMS
algorithm in sections 3.2-3.7.

• Rosenblatt’s perceptron is then discussed at the end of the chapter in
sections 3.8-3.10.
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3.2 Adaptive filtering problem

• Consider an unknown dynamical system.

• We know the scalar outputs d(i) (responses) corresponding to the
input vectors x(i).

• The input vectors x(i) are assumed to be m-dimensional and identically
distributed.

• The input vectors x(i) can arise either spatially or temporally:

1. The m elements of x(i) originate at different points in space.
- x(i) is then called a snapshot of data.
- Example: an uniformly spaced line array of sensors.

29



2. The elements of x(i) are the m last values of a scalar time series
(signal).
- Samples are uniformly spaced in time.

• The described multiple-input single-output system is modeled using a
single linear neuron.

• The learning algorithm modifying the synaptic weights has the fol-
lowing properties:

1. Starts from arbitrary initial values of the synaptic weights.

2. The weights are updated (adjusted) continuously.

3. Each update of synaptic weights is made during one single sampling
interval.

• This kind of neuronal model is called an adaptive filter.

• The operation of the adaptive filter consist of two stages
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1. Filtering. Here the output y(i) and the error signal e(i) are com-
puted.

2. Adaptation of the weights using the error signal e(i).

• These two processes form a feedback loop around the neuron.
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• Since the neuron is linear, its output

y(i) = xT (i)w(i) =
m∑

k=1

wk(i)xk(i)

where the weight vector

w(i) = [w1(i), w2(i), . . . , wm(i)]T

and the input vector

x(i) = [x1(i), x2(i), . . . , xm(i)]T .

The error signal
e(i) = d(i)− y(i)

is used to adapt the filter by minimizing some appropriate cost function.

• Before deriving the adaptive algorithm, some unconstrained optimiza-
tion methods are reviewed in the next section.

• They are generally applicable to suitable cost functions used in neural
networks and other areas.
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3.3 Unconstrained optimization techniques

• Assume that E(w) is a continuosly differentiable cost function of the
weight (parameter) vector w.

• Unconstrained optimization problem: minimize the cost function E(w)
with respect to w.

• An optimal solution w∗ satisfies the condition E(w∗) ≤ E(w).

• The necessary condition for optimality is

∇E(w∗) = 0.

• Here ∇ is the gradient operator

∇ =

[
∂

∂w1

,
∂

∂w2

, . . . ,
∂

∂wm

]T

and ∇E(w) is the gradient vector of the cost function:

∇E(w) =

[
∂E
∂w1

,
∂E
∂w2

, . . . ,
∂E

∂wm

]T

.
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• Iterative descent type algorithms are well suited for learning the weights
of an adaptive filter or a neural network.

• In these algorithms, one tries to reduce the value of the cost function
at each iteration:

E(w(n + 1)) < E(w(n))

• The iteration starts from some initial guess w(0).

• It is hoped that the local iterative algorithm will converge to the opti-
mal solution w∗.

• This may not always happen because the algorithm:
- gets stuck in a local minimum.
- becomes unstable because of too large corrections.

• In the following, three general unconstrained optimization methods re-
lying on iterative descent are described.
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Method of Steepest Descent

• For brevity, denote the gradient vector by g = ∇E(w).

• The negative gradient vector −g(n) shows the direction of steepest
descent of the cost function E(w) at point w(n).

• This leads directly to the steepest descent algorithm

w(n + 1) = w(n)− ηg(n)

where η is a positive constant called stepsize or learning-rate parameter.

• The correction (update) at step n is thus

∆w(n) = w(n + 1)−w(n) = −ηg(n).

• The new value E(w(n + 1)) of the cost function can be approximated
by using a first-order Taylor series expansion around w(n):

E(w(n + 1)) ≈ E(w(n)) + gT (n)∆w(n)
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• This approximation is justified for small η.

• Inserting ∆w(n) in this formula yields

E(w(n + 1)) ≈ E(w(n))− η ‖ g(n) ‖2 .

• This shows that the value of the cost function decreases at each ite-
ration for small learning rates η.

• The method of steepest descent converges to the optimal solution w∗

slowly.
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• The learning parameter η has a profound effect on the convergence
behavior:

– When η is small, the trajectory of w(n) follows a smooth path
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– When η is large, the trajectory of w(n) oscillates

– If η exceeds a critical value, the steepest descent algorithm beco-
mes unstable (diverges).
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Newton’s Method

• Basic idea of Newton’s method: minimize the quadratic approximation
of the cost function E(w(n)) around the current point w(n).

• This is done at each iteration using a second-order Taylor series ex-
pansion of the cost function.

• Recall first the Taylor series expansion for a function f(x) of a single
scalar variable x:

f(x + ∆x) = f(x) +
df(x)

dx
∆x +

1

2

d2f(x)

dx2
(∆x)2 + · · ·

• This can be generalized for a scalar function E(w) of several variables
(components of the vector w) as follows:

E(w + ∆w) = E(w) + gT ∆w +
1

2
(∆w)TH∆w + · · ·
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• Here g = ∇E(w) is the gradient vector of E(w), and H its Hessian
matrix ∇2E(w):

H =


∂2E
∂w2

1

∂2E
∂w1∂w2

· · · ∂2E
∂w1∂wm

∂2E
∂w2∂w1

∂2E
∂w2

2
· · · ∂2E

∂w2∂wm

...
...

. . .
...

∂2E
∂wm∂w1

∂2E
∂wm∂w2

· · · ∂2E
∂w2

m


• The Hessian H is a symmetric m × m matrix containing the second

derivatives of E(w) with respect to the components of the weight
vector w.

• Requirement for using the Hessian: the cost function E(w) must be
twice continuously differentiable with respect to the vector w.

• The second-order approximation of the Taylor series yields

∆E(w(n)) = gT (n)∆w(n) +
1

2
(∆w)T (n)H(n)∆w(n).
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• Differentiating this equation with respect to ∆w leads to the condition

g(n) + H(n)∆w(n) = 0.

for minimizing the change ∆E(w) = E(w + ∆w)− E(w).

• Solving this equation for ∆w(n) yields for the update at step n

∆w(n) = −H−1(n)g(n).

where H−1(n) is the inverse of the Hessian of E(w).

• Thus iterations of Newton’s method have the form

w(n + 1) = w(n) + ∆w(n) = w(n)−H−1(n)g(n).

• Newton’s method converges quickly asymptotically.

• It does not exhibit a zigzagging behavior.

• However, H(n) must be a positive definite matrix for all n.
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• This is not always true in practice; then the method must be modified.

• Other drawbacks of Newton’s method:
- Convergence may be slow in the beginning (far from optimum).
- Requires knowledge of second derivatives.
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Gauss-Newton Method

• The Gauss-Newton method is applicable to a cost function that is
expressed as the sum of error squares. Let

E(w) =
1

2

n∑
i=1

e2(i)

• The error terms here are computed by keeping the weight vector w
fixed over the entire observation interval 1 ≤ i ≤ n.

• In this method, the dependence of the error e(i) on w is linearized
around the operating point w(n):

e′(i,w) = e(i) +

[
∂e(i)

∂w

]T

(w −w(n)), i = 1, 2, . . . , n.

• The gradient is evaluated at the operating point w(n).
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• These n equations can be written in matrix-vector form compactly as
follows:

e′(n,w) = e(n) + J(n)(w −w(n))

• Here e(n) is the error vector

e(n) = [e(1), e(2), . . . , e(n)]T

• J(n) is the n×m Jacobian matrix of e(n):

J(n) =


∂e(1)
∂w1

∂e(1)
∂w2

· · · ∂e(1)
∂wm

∂e(2)
∂w1

∂e(2)
∂w2

· · · ∂e(2)
∂wm

...
...

. . .
...

∂e(n)
∂w1

∂e(n)
∂w2

· · · ∂e(n)
∂wm


• The Jacobian J(n) is the transpose of the m× n gradient matrix

∇e(n) = [∇e(1),∇e(2), . . . ,∇e(n)].
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• The updated weight vector w(n + 1) is obtained by minimizing the
squared norm

1

2
‖ e′(n,w) ‖2

with respect to w.

• The squared norm is first evaluated and then differentiated with respect
to w.

• Setting the result equal to zero and solving leads to the Gauss-Newton
iteration

w(n + 1) = w(n)− [JT (n)J(n)]−1JT (n)e(n).

• A more detailed derivation is given in Haykin’s book.

• Advantage: second derivatives are not needed.
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• Gauss-Newton method is often implemented in a slightly modified form

w(n + 1) = w(n)− [JT (n)J(n) + δI]−1JT (n)e(n)

where δ is a small positive constant and I the unit matrix.

• This guarantees that the inverse matrix always exists.
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