
2.9 Learning without a Teacher

• No labeled training examples are now available.

• Two subclasses of learning without a teacher.

1



1. Reinforcement learning and Neurodynamic programming

• Block diagram of a reinforcement learning system.

• In reinforcement learning, a scalar index of performance is minimized.

• Here a critic is used.

• It converts a primary reinforcement signal received from the environ-
ment to a higher-quality heuristic reinforcement signal.

2



• Both of these signals are scalars.

• The system learns under delayed reinforcement.

• This means that the system observes a temporal sequence of state
vectors.

• This eventually results in the generation of the heuristic reinforcement
signal.

• The goal of the learning is to minimize a cost-to-go-function.

• This is defined as the expectation of the cumulative cost of actions
taken over a sequence of steps.

• Another component of the reinforcement learning system is called the
learning machine.

• Its task is to discover the actions determining the best overall behavior
of the system.

3



• Delayed reinforcement learning is difficult to perform for two basic
reasons:
1. There is no teacher;
2. A temporal credit assignment problem must be solved because of
the time delay used.

• On the other hand, delayed reinforcement learning is very appealing.

• Reason: it learns to perform a task using only its own experiences.

• Reinforcement learning is closely related to dynamic programming.

• This was developed in optimal control theory (Bellman, 1957).

• Dynamic programming provides the mathematical formalism for sequen-
tial decision making.

• An introduction to dynamic programming and its relationship to rein-
forcement learning are presented in Chapter 12.

4



2. Unsupervised Learning

• In unsupervised (or self-organized) learning there is no external teacher
or critic available for learning.

• Instead, the neural network tries to learn some meaningful internal
statistical representation of the data.

• For example, a suitable linear model fitted to the input data.

• Some task-independent measure is used for the quality of the repre-
sentation.

• The free parameters of the neural network are optimized with respect
to this measure.

• After learning, the network can encode features of the input data.

• Competitive learning (winner-take-all networks) can be used for unsu-
pervised learning.

• Hebbian learning is also often employed.
5



• Various forms of unsupervised learning are discussed in Chapters 8-11.

6



2.10 Learning Tasks

Pattern Association

• Associative memory is a brainlike distributed memory that learns by
association.

• Association is an important property of the human memory.

• It is also a basic operation in all models of cognition.

• Two basic forms: autoassociation or heteroassociation.

• In autoassociation, a neural network is first required to store a set of
input patterns (vectors).

• This is done by repeatedly presenting them to the network.

• After learning, a partial or noisy version of an original input pattern is
shown to the network.

• The task is now to retrieve (recall) the original pattern.
7



• Heteroassociation differs from autoassociation in that an arbitrary
set of input patterns is paired with another arbitrary set of output
patterns.

• Autoassociation uses unsupervised learning, while heteroassociation
requires supervised learning.

• The operation of an associative memory consists of two phases:
- storage phase (training with input patterns);
- recall phase (retrieval of a memorized pattern).

• If an associative memory cannot retrieve a stored input pattern per-
fectly, it is said to have made an error in recall.

• The number q of patterns stored in an associative memory measures
the storage capacity of the network.

• A design goal: make the storage capacity as large as possible compared
to the number of neurons in the network.

• On the other hand, a large fraction of memorized patterns should be
recalled correctly. — Conflicting goals!

8



Pattern Recognition

• Humans are good at pattern recognition.

• Examples: recognizing speech, a familiar face, objects in a scene.

• This ability is achieved through a learning process, or with neural
networks.

• A formal definition of pattern recognition:
A process whereby a received pattern or signal is assigned to one of a
prescribed number of classes (categories).

• In pattern recognition tasks, a neural network is first trained using
input patterns having known categories.

• After training, the network should be able to classify (recognize) new
patterns belonging to the learned classes.

• Formally, each pattern corresponds to a point in a multidimensional
decision space.

9



• The decision space is divided into regions corresponding to each pattern
class.

• During the training process, the boundaries between the class regions
are determined.

• Learning is statistical because the input patterns have inherent varia-
bility (coming from some statistical distributions).

10



• Neural pattern classifiers can have two general forms:

1. The overall neural recognition system is divided into:

- An unsupervised network for feature extraction.
- A supervised network for subsequent classification.

- In feature extraction, the dimensionality of input
patterns is reduced.
- This data compression makes the subsequent classification
task simpler.

Input
Result of
Classification

Feature
vector
 y

x

Supervised
network for
classification

Unsupervised
network for
feature
extraction

11



x y

Feature
extraction

Classification

r-dimensional
decision
space

feature space
q-dimensional

observation space
m-dimensional

2. Single multilayer feedforward network.
- Trained using supervised learning.
- Neurons in the hidden layer(s) perform feature extraction.

12



Function Approximation

• Consider a nonlinear input-output mapping

d = f(x)

Here x is the input and d the output vector.

• The vector-valued mapping function f(.) is assumed to be unknown.

• However, a set F of N labeled examples is known:

F = {(x1,d1), (x2,d2), . . . , (xN ,dN)}

• The task is to design a neural network whose actual input-output map-
ping F(.) approximates the unknown mapping f(.) well enough.

• Requirement: the Euclidean norm

‖ F(x)− f(x) ‖< ε for all x

where ε is a small positive number.
13



• If there are enough training samples as well as free parameters in the
network, the goal can be achieved.

• This approximation problem is a perfect candidate for supervised lear-
ning.

• In fact, supervised learning may be understood as an approximation
problem.

• Two important ways of exploiting the approximation ability of a neural
network:

14



1. System identification.

– Neural network learns the input-output mapping f(.) of an
unknown system.

– The system is a time-invariant, multiple-input
multiple-output (MIMO) system.

– The error signal ei between the true output yi of the
network and the desired output di corresponding to the
input vector xi is used for training.

Unknown
system

Neural network
model

Input
Σ

+

-xi

di

ei

yi

15



2. Inverse system.

– In this case, we know the MIMO system mapping d = f(x).

– The task is now to learn the inverse mapping

x = f−1(d).

– A straigthforward inversion of f is often impossible
because f is far too complex.

– The same approach may be applied to the inverse
problem as to standard system identification.

– The roles of x and d are now interchanged.

Σ

Input

f(.)

System
output

Error

Model
output

+

xi
di

yi

ei

-Inverse
model

16



Control

• An often encountered task: control of a process or a critical part of a
system.

• Neural networks may be applied instead of classical control theory.

Σ

d

Reference
signal Error

e+
-

u

Plant
output y

Plant
input

Controller Plant

• A schematic diagram of a feedback control system.

• It is again assumed that an external reference signal d is available.

• The error signal e between d and the output y of a neural network
controller is used for adjusting the free parameters of the network.

• However, now the error signal e propagates through the neural cont-
roller

17



• Therefore, for applying error-correction learning algorithm the Jacobian
matrix J is needed.

• The elements of J are the partial derivatives ∂yk/∂uj.

• Here yk is an element of the plant output vector y and uj is an element
of the plant input vector u.

• These partial derivatives are unknown.

• They can be learned either indirectly or directly.

• These methods are discussed briefly on a general level in the book.

18



Filtering

• In filtering, some interesting quantity is extracted from noisy observa-
tions using a suitable algorithm or device.

• Assume that we have measurement data up to a discrete time point
n.

• A filter can be used for three basic tasks:

1. Filtering. A quantity is estimated at time n.

2. Smoothing. A quantity is estimated at time n − d, where d is a
positive time delay.

- Thus we have some future measurements from later than the
estimation time available.

3. Prediction. The estimation is performed at some future time n+d,
d > 0.

19



Smoothing

Prediction

Filtering

n− 3 n− 2 n− 1 n

• First example of filtering: cocktail party problem.

• Separation of individual voices from their mixtures.

• More generally, this type of filtering problem arises in blind signal se-
paration.

20



• Several efficient neural methods have been developed for blind signal
separation recently.

• The data model used in blind signal separation:

x(n) = Au(n)

Here u(n) is a vector consisting of m unknown but mutually statis-
tically independent source signals at time n.

• A is an unknown nonsingular m×m mixing matrix.

• The task is to recover the source signals from the observed mixtures
x(n) in an unsupervised manner.

• This can be done by using the strong but often plausible independence
assumption.

21



• A blind separation system

• Second example of filtering: prediction problem.

• Now the task is to predict the present value x(n) of a scalar process
(time series).

22



• It is assumed that m previous values x(n−T ), x(n− 2T ), . . . , x(n−
mT ) of the time series are known.

• Here m is the order of prediction.

• This problem may be solved using error-correction learning in an un-
supervised manner.

• x(n) serves the purpose of desired response.

• Neural network provides a method for predicting nonlinear processes.

23



Beamforming

• Still one application of neural networks.

• This is needed in processing radar and sonar signal in direction of arrival
estimation.

• Not so important application.

24



2.12 Adaptation

• When a neural network operates in a stationary environment, it can
first learn the weight values (parameters).

• After learning, the weight values are frozen and the network is applied
without further learning to new input data.

• However, in practice the environment (data) is often more or less nons-
tationary

• This means that the statistical properties of the data change with time.

• This requires that the neural network should track the statistical va-
riations in the data by adapting its parameters.

• The theory of linear adaptation (linear adaptive filters) is well unders-
tood.

• However, in neural networks nonlinear filters are typically used.

25



• In practice, a neural network can be adapted by retraining it at suitable
intervals.

• On short intervals, the data is usually roughly stationary even though
it is generally nonstationary.

• Another adaptation method: continual training with time-ordered examples.

• In this case, the neural network becomes a nonlinear adaptive filter.

• In practice, successful adaptation requires that the time changes in the
data are slow enough.

26



3. Single-Layer Perceptrons

3.1 Introduction

• Perceptron is the first neural network model proposed for supervised
learning (Rosenblatt, 1958).

• Simplest form of a neural network used for classification.

• Consists basically of a single neuron with adjustable synaptic weights
and bias.

• Perceptron can be used for classifying linearly separable patterns be-
longing to two classes.

• The learning algorithm converges to a separating hyperplane in this
case.

• Perceptron is closely related to the least-mean-square (LMS) algorithm
or Widrow-Hoff delta rule (1960).

27



• The LMS algorithm is applied widely to linear adaptive filtering in
signal processing.

• In this chapter, we first briefly discuss adaptive filtering and the LMS
algorithm in sections 3.2-3.7.

• Rosenblatt’s perceptron is then discussed at the end of the chapter in
sections 3.8-3.10.

28



3.2 Adaptive filtering problem

• Consider an unknown dynamical system.

• We know the scalar outputs d(i) (responses) corresponding to the
input vectors x(i).

• The input vectors x(i) are assumed to be m-dimensional and identically
distributed.

• The input vectors x(i) can arise either spatially or temporally:

1. The m elements of x(i) originate at different points in space.
- x(i) is then called a snapshot of data.
- Example: an uniformly spaced line array of sensors.

29



2. The elements of x(i) are the m last values of a scalar time series
(signal).
- Samples are uniformly spaced in time.

• The described multiple-input single-output system is modeled using a
single linear neuron.

• The learning algorithm modifying the synaptic weights has the fol-
lowing properties:

1. Starts from arbitrary initial values of the synaptic weights.

2. The weights are updated (adjusted) continuously.

3. Each update of synaptic weights is made during one single sampling
interval.

• This kind of neuronal model is called an adaptive filter.

• The operation of the adaptive filter consist of two stages

30



1. Filtering. Here the output y(i) and the error signal e(i) are com-
puted.

2. Adaptation of the weights using the error signal e(i).

• These two processes form a feedback loop around the neuron.

31



• Since the neuron is linear, its output

y(i) = xT (i)w(i) =
m∑

k=1

wk(i)xk(i)

where the weight vector

w(i) = [w1(i), w2(i), . . . , wm(i)]T

and the input vector

x(i) = [x1(i), x2(i), . . . , xm(i)]T .

The error signal
e(i) = d(i)− y(i)

is used to adapt the filter by minimizing some appropriate cost function.

• Before deriving the adaptive algorithm, some unconstrained optimiza-
tion methods are reviewed in the next section.

• They are generally applicable to suitable cost functions used in neural
networks and other areas.

32



3.3 Unconstrained optimization techniques

• Assume that E(w) is a continuosly differentiable cost function of the
weight (parameter) vector w.

• Unconstrained optimization problem: minimize the cost function E(w)
with respect to w.

• An optimal solution w∗ satisfies the condition E(w∗) ≤ E(w).

• The necessary condition for optimality is

∇E(w∗) = 0.

• Here ∇ is the gradient operator

∇ =

[
∂

∂w1

,
∂

∂w2

, . . . ,
∂

∂wm

]T

and ∇E(w) is the gradient vector of the cost function:

∇E(w) =

[
∂E
∂w1

,
∂E
∂w2

, . . . ,
∂E

∂wm

]T

.

33



• Iterative descent type algorithms are well suited for learning the weights
of an adaptive filter or a neural network.

• In these algorithms, one tries to reduce the value of the cost function
at each iteration:

E(w(n + 1)) < E(w(n))

• The iteration starts from some initial guess w(0).

• It is hoped that the local iterative algorithm will converge to the opti-
mal solution w∗.

• This may not always happen because the algorithm:
- gets stuck in a local minimum.
- becomes unstable because of too large corrections.

• In the following, three general unconstrained optimization methods re-
lying on iterative descent are described.

34



Method of Steepest Descent

• For brevity, denote the gradient vector by g = ∇E(w).

• The negative gradient vector −g(n) shows the direction of steepest
descent of the cost function E(w) at point w(n).

• This leads directly to the steepest descent algorithm

w(n + 1) = w(n)− ηg(n)

where η is a positive constant called stepsize or learning-rate parameter.

• The correction (update) at step n is thus

∆w(n) = w(n + 1)−w(n) = −ηg(n).

• The new value E(w(n + 1)) of the cost function can be approximated
by using a first-order Taylor series expansion around w(n):

E(w(n + 1)) ≈ E(w(n)) + gT (n)∆w(n)
35



• This approximation is justified for small η.

• Inserting ∆w(n) in this formula yields

E(w(n + 1)) ≈ E(w(n))− η ‖ g(n) ‖2 .

• This shows that the value of the cost function decreases at each ite-
ration for small learning rates η.

• The method of steepest descent converges to the optimal solution w∗

slowly.

36



• The learning parameter η has a profound effect on the convergence
behavior:

– When η is small, the trajectory of w(n) follows a smooth path

37



– When η is large, the trajectory of w(n) oscillates

– If η exceeds a critical value, the steepest descent algorithm beco-
mes unstable (diverges).

38



Newton’s Method

• Basic idea of Newton’s method: minimize the quadratic approximation
of the cost function E(w(n)) around the current point w(n).

• This is done at each iteration using a second-order Taylor series ex-
pansion of the cost function.

• Recall first the Taylor series expansion for a function f(x) of a single
scalar variable x:

f(x + ∆x) = f(x) +
df(x)

dx
∆x +

1

2

d2f(x)

dx2
(∆x)2 + · · ·

• This can be generalized for a scalar function E(w) of several variables
(components of the vector w) as follows:

E(w + ∆w) = E(w) + gT ∆w +
1

2
(∆w)TH∆w + · · ·

39



• Here g = ∇E(w) is the gradient vector of E(w), and H its Hessian
matrix ∇2E(w):

H =


∂2E
∂w2

1

∂2E
∂w1∂w2

· · · ∂2E
∂w1∂wm

∂2E
∂w2∂w1

∂2E
∂w2

2
· · · ∂2E

∂w2∂wm

...
...

. . .
...

∂2E
∂wm∂w1

∂2E
∂wm∂w2

· · · ∂2E
∂w2

m


• The Hessian H is a symmetric m × m matrix containing the second

derivatives of E(w) with respect to the components of the weight
vector w.

• Requirement for using the Hessian: the cost function E(w) must be
twice continuously differentiable with respect to the vector w.

• The second-order approximation of the Taylor series yields

∆E(w(n)) = gT (n)∆w(n) +
1

2
(∆w)T (n)H(n)∆w(n).

40



• Differentiating this equation with respect to ∆w leads to the condition

g(n) + H(n)∆w(n) = 0.

for minimizing the change ∆E(w) = E(w + ∆w)− E(w).

• Solving this equation for ∆w(n) yields for the update at step n

∆w(n) = −H−1(n)g(n).

where H−1(n) is the inverse of the Hessian of E(w).

• Thus iterations of Newton’s method have the form

w(n + 1) = w(n) + ∆w(n) = w(n)−H−1(n)g(n).

• Newton’s method converges quickly asymptotically.

• It does not exhibit a zigzagging behavior.

• However, H(n) must be a positive definite matrix for all n.

41



• This is not always true in practice; then the method must be modified.

• Other drawbacks of Newton’s method:
- Convergence may be slow in the beginning (far from optimum).
- Requires knowledge of second derivatives.

42



Gauss-Newton Method

• The Gauss-Newton method is applicable to a cost function that is
expressed as the sum of error squares. Let

E(w) =
1

2

n∑
i=1

e2(i)

• The error terms here are computed by keeping the weight vector w
fixed over the entire observation interval 1 ≤ i ≤ n.

• In this method, the dependence of the error e(i) on w is linearized
around the operating point w(n):

e′(i,w) = e(i) +

[
∂e(i)

∂w

]T

(w −w(n)), i = 1, 2, . . . , n.

• The gradient is evaluated at the operating point w(n).

43



• These n equations can be written in matrix-vector form compactly as
follows:

e′(n,w) = e(n) + J(n)(w −w(n))

• Here e(n) is the error vector

e(n) = [e(1), e(2), . . . , e(n)]T

• J(n) is the n×m Jacobian matrix of e(n):

J(n) =


∂e(1)
∂w1

∂e(1)
∂w2

· · · ∂e(1)
∂wm

∂e(2)
∂w1

∂e(2)
∂w2

· · · ∂e(2)
∂wm

...
...

. . .
...

∂e(n)
∂w1

∂e(n)
∂w2

· · · ∂e(n)
∂wm


• The Jacobian J(n) is the transpose of the m× n gradient matrix

∇e(n) = [∇e(1),∇e(2), . . . ,∇e(n)].

44



• The updated weight vector w(n + 1) is obtained by minimizing the
squared norm

1

2
‖ e′(n,w) ‖2

with respect to w.

• The squared norm is first evaluated and then differentiated with respect
to w.

• Setting the result equal to zero and solving leads to the Gauss-Newton
iteration

w(n + 1) = w(n)− [JT (n)J(n)]−1JT (n)e(n).

• A more detailed derivation is given in Haykin’s book.

• Advantage: second derivatives are not needed.

45



• Gauss-Newton method is often implemented in a slightly modified form

w(n + 1) = w(n)− [JT (n)J(n) + δI]−1JT (n)e(n)

where δ is a small positive constant and I the unit matrix.

• This guarantees that the inverse matrix always exists.

46


	Learning without a Teacher 
	Learning Tasks 
	Adaptation 
	Single-Layer Perceptrons
	Introduction 
	Adaptive filtering problem 
	Unconstrained optimization techniques 


